16 |
Moghaddam S, Kiger K T, Ohadi M. Measurement of corona wind velocity and calculation of energy conversion efficiency for air-side heat transfer enhancement in compact heat exchangers [J]. HVAC&R Research, 2006, 12(1): 57-68.
|
17 |
Rashkovan A, Sher E, Kalman H. Experimental optimization of an electric blower by corona wind [J]. Applied Thermal Engineering, 2002, 22(14): 1587-1599.
|
18 |
Hauksbee F. Physico-mechanical Experiments on Various Subjects[M]. London: Brugis, 1709: 46-47.
|
1 |
Goodenough T I J, Goodenough P W, Goodenough S M. The efficiency of corona wind drying and its application to the food industry [J]. Journal of Food Engineering, 2007, 80(4): 1233-1238.
|
2 |
Nasirivatan S, Kasaeian A, Ghalamchi M, et al. Performance optimization of solar chimney power plant using electric/corona wind [J]. Journal of Electrostatics, 2015, 78: 22-30.
|
3 |
June M S, Kribs J, Lyons K M. Measuring efficiency of positive and negative ionic wind devices for comparison to fans and blowers [J]. Journal of Electrostatics, 2011, 69(4): 345-350.
|
19 |
亢燕铭, 叶龙. 关于电除尘器内二次流的典型研究[J]. 西安建筑科技大学学报(自然科学版), 1997, (3): 73-78.
|
|
Kang Y M, Ye L. Typical research on secondary flow in electric precipitator [J]. Journal of Xi􀆳an University of Architecture and Technology (Natural Science Edition), 1997, (3): 73-78.
|
4 |
王维, 杨兰均, 高洁, 等. 多针-网电极离子风激励器推力与推功比的实验研究[J]. 物理学报, 2013, 62(7): 292-298.
|
|
Wang W, Yang L J, Gao J, et al. Experimental study on thrust and thrust power ratio of multi-needle-net electrode ionic wind actuator [J]. Acta Physica Sinica, 2013, 62(7): 292-298.
|
5 |
Wang J, Zhu T, Cai Y X, et al. Review on the recent development of corona wind and its application in heat transfer enhancement [J]. International Journal of Heat and Mass Transfer, 2020, 152: 119545.
|
20 |
亢燕铭, 荣美丽. 空气净化过程中的电晕放电与离子风[J]. 自然杂志, 2002, 24(3): 125-129.
|
|
Kang Y M, Rong M L. Corona discharge and ion wind during air purification [J]. Chinese Journal of Nature, 2002, 24(3): 125-129.
|
6 |
Lee J R, Lau E V. Effects of relative humidity in the convective heat transfer over flat surface using ionic wind [J]. Applied Thermal Engineering, 2017, 114: 554-560.
|
7 |
Myles L, Meyers T P, Robinson L. Atmospheric ammonia measurement with an ion mobility spectrometer [J]. Atmospheric Environment, 2006, 40(30): 5745-5752.
|
21 |
杨加元, 陈海丰, 朱益民. 多针电极双极电晕放电电极间距优化[J]. 高电压技术, 2008, 34(1): 95-98.
|
|
Yang J Y, Chen H F, Zhu Y M. Optimization of electrode pitch for bipolar corona discharge with multi-needle electrodes [J]. High Voltage Engineering, 2008, 34(1): 95-98.
|
8 |
姚德新, 邹应全, 蒋沛. 基于针-针电极直流高压电晕放电暗电流测量大气相对湿度的研究[J]. 传感技术学报, 2014, 27(12): 1716-1720.
|
|
Yao D X, Zou Y Q, Jiang P. Research on measurement of atmospheric relative humidity based on needle-needle electrode DC high voltage corona discharge dark current [J]. Chinese Journal of Sensors and Actuators, 2014, 27(12): 1716-1720.
|
9 |
李小华, 石云飞, 王静, 等. 电晕风强化大功率LED散热研究[J]. 电子器件, 2019, 42(1): 111-115.
|
22 |
李清泉, 刘勇, 孔苏丽. 电流体动力等离子体发生器的仿真优化[J]. 高电压技术, 2009, 35(1): 17-21.
|
|
Li Q Q, Liu Y, Kong S L. Simulation and optimization of a galvanodynamic plasma generator [J]. High Voltage Engineering, 2009, 35(1): 17-21.
|
9 |
Li X H, Shi Y F, Wang J, et al. Research on corona wind strengthening heat dissipation of high power LED [J]. Journal of Electronic Devices, 2019, 42(1): 111-115.
|
10 |
陈彦伶, 李华, 蒋林秀, 等. 一种阵列式“多针-网”离子风灭菌装置[J]. 桂林电子科技大学学报, 2018, 38(6): 487-490.
|
|
Chen Y L, Li H, Jiang L X, et al. An array type “multi-needle-net” ion wind sterilization device [J]. Journal of Guilin University of Electronic Technology, 2018, 38(6): 487-490.
|
23 |
刘勇, 李清泉. 电流体动力等离子体发生器特性实验研究[J]. 电工电能新技术, 2009, 28(2): 29-32.
|
|
Liu Y, Li Q Q. Experimental study on the characteristics of galvanodynamic plasma generator [J]. Advanced Technology of Electrical Engineering and Energy, 2009, 28(2): 29-32.
|
24 |
Kim B, Lee S, Lee Y S, et al. Ion wind generation and the application to cooling [J]. Journal of Electrostatics, 2012, 70(5): 438-444.
|
25 |
Huang R T, Sheu W, Wang C. Heat transfer enhancement by needle-arrayed electrodes — an EHD integrated cooling system [J]. Energy Conversion and Management, 2009, 50(7): 1789-1796.
|
26 |
Molki M, Bhamidipati K L. Enhancement of convective heat transfer in the developing region of circular tubes using corona wind [J]. International Journal of Heat and Mass Transfer, 2004, 47(19/20): 4301-4314.
|
27 |
Leger L, Moreau E, Touchard G G. Effect of a DC corona electrical discharge on the airflow along a flat plate [J]. IEEE Transactions on Industry Applications, 2002, 38(6): 1478-1485.
|
28 |
Feng J, Wang C H, Liu Q, et al. Enhancement of heat transfer via corona discharge by using needle-mesh and needle-fin electrodes [J]. International Journal of Heat and Mass Transfer, 2019, 130: 640-649.
|
11 |
谢志辉, 陈林根, 孙丰瑞, 等. 纳米二氧化钛协同放电等离子体降解甲苯的实验研究[J]. 高压电器, 2010, 46(1): 13-16, 21.
|
|
Xie Z H, Chen L G, Sun F R, et al. Experimental study on the degradation of toluene with nano-titanium dioxide co-discharge plasma [J]. High Voltage Apparatus, 2010, 46(1): 13-16, 21.
|
12 |
Zhang J, Lai F C. Heat transfer enhancement using corona wind generator [J]. Journal of Electrostatics, 2018, 92: 6-13.
|
13 |
Mahmoudi S R, Adamiak K, Castle P, et al. The effect of corona discharge on free convection heat transfer from a horizontal cylinder [J]. Experimental Thermal and Fluid Science, 2010, 34(5): 528-537.
|
14 |
Kalman H, Sher E. Enhancement of heat transfer by means of a corona wind created by a wire electrode and confined wings assembly [J]. Applied Thermal Engineering, 2001, 21(3): 265-282.
|
29 |
Go D B, Maturana R A, Fisher T S, et al. Enhancement of external forced convection by ionic wind [J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 6047-6053.
|
30 |
Tanoue K, Taniguchi H, Masuda H. Experimental study on both ionic wind and resuspension of particles under unequal electrostatic field [J]. Advanced Powder Technology, 2006, 17(1): 69-83.
|
15 |
Kim C, Park D, Noh K C, et al. Velocity and energy conversion efficiency characteristics of ionic wind generator in a multistage configuration [J]. Journal of Electrostatics, 2010, 68(1): 36-41.
|