1 |
Ge W, Chang Q, Li C X, et al. Multiscale structures in particle-fluid systems: characterization, modeling, and simulation[J]. Chemical Engineering Science, 2019, 198: 198-223.
|
2 |
初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444.
|
|
Chu G W, Liao H G, Wang D, et al. Gas-liquid reaction process intensification at micro-/nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444.
|
3 |
Boffito D C, Fernandez Rivas D. Process intensification connects scales and disciplines towards sustainability[J]. The Canadian Journal of Chemical Engineering, 2020, 98(12): 2489-2506.
|
4 |
Tian Y H, Demirel S E, Hasan M M F, et al. An overview of process systems engineering approaches for process intensification: state of the art[J]. Chemical Engineering and Processing-Process Intensification, 2018, 133: 160-210.
|
5 |
Reay D, Ramshaw C, Harvey A. Process Intensification: Engineering for Efficiency, Sustainability and Flexibility [M]. Butterworth-Heinemann, 2015.
|
6 |
骆广生, 王凯, 徐建鸿, 等. 微化工过程研究进展[J]. 中国科学: 化学, 2014, 44(9): 1404-1412.
|
|
Luo G S, Wang K, Xu J H, et al. Advances in research of microstructured chemical process[J]. Scientia Sinica Chimica, 2014, 44(9): 1404-1412.
|
7 |
Dong Z Y, Wen Z H, Zhao F, et al. Scale-up of micro-and milli-reactors: an overview of strategies, design principles and applications[J]. Chemical Engineering Science: X, 2021, 10: 100097.
|
8 |
Ge W, Wang L M, Xu J, et al. Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application[J]. Reviews in Chemical Engineering, 2017, 33(6): 551-623.
|
9 |
Ge W, Li J. Pseudo-particle approach to hydrodynamics of gas/solid two-phase flow[C]// Proceedings of the the 5th International Conference on Circulating Fluidized Bed. Beijing, 1997.
|
10 |
Ge W, Li J H. Macro-scale phenomena reproduced in microscopic systems—pseudo-particle modeling of fluidization[J]. Chemical Engineering Science, 2003, 58(8): 1565-1585.
|
11 |
Zhang C L, Shen G F, Li C X, et al. Hard-sphere/pseudo-particle modelling (HS-PPM) for efficient and scalable molecular simulation of dilute gaseous flow and transport[J]. Molecular Simulation, 2016, 42(14): 1171-1182.
|
12 |
沈国飞. 纳微流动的分子动力学模拟 [D]. 北京: 中国科学院研究生院, 2010.
|
|
Shen G F. Molecular dynamics simulation for micro-/nano-flows [D]. Beijing: Graduates School of the Chinese Academy of Sciences, 2010.
|
13 |
Li Y P, Zhang C L, Li C X, et al. Simulation of the effect of coke deposition on the diffusion of methane in zeolite ZSM-5[J]. Chemical Engineering Journal, 2017, 320: 458-467.
|
14 |
赵祺, 赵明璨, 马琳博, 等. 硬球-拟颗粒模拟高超声速稀薄气体流动[J]. 过程工程学报, 2019, 19(6): 1093-1100.
|
|
Zhao Q, Zhao M C, Ma L B, et al. Hard-sphere/pseudo-particle modeling(HS-PPM) for hypersonic rarefied gas flow[J]. The Chinese Journal of Process Engineering, 2019, 19(6): 1093-1100.
|
15 |
Wang L M, Ge W, Chen F G. Pseudo-particle modeling for gas flow in microchannels[J]. Chinese Science Bulletin, 2007, 52(4): 450-455.
|
16 |
Ge W, Ma J S, Zhang J Y, et al. Particle methods for multiscale simulation of complex flows[J]. Chinese Science Bulletin, 2005, 50(11): 1057-1069.
|
17 |
Li Y P, Zhao M C, Li C X, et al. Concentration fluctuation due to reaction-diffusion coupling near an isolated active site on catalyst surfaces[J]. Chemical Engineering Journal, 2019, 373: 744-754.
|
18 |
He H M, Sun F X, Aguila B, et al. A bifunctional metal-organic framework featuring the combination of open metal sites and Lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis[J]. Journal of Materials Chemistry A, 2016, 4(39): 15240-15246.
|
19 |
Li J J, Li X G, Zhang X Y, et al. Development of graphene aerogels with high strength and ultrahigh adsorption capacity for gas purification[J]. Materials & Design, 2021, 208: 109903.
|
20 |
Qu F, Zhu L Z, Yang K. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH)[J]. Journal of Hazardous Materials, 2009, 170(1): 7-12.
|
21 |
Li G, Xiao P, Webley P, et al. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X[J]. Adsorption, 2008, 14(2/3): 415-422.
|
22 |
Kostoglou N, Koczwara C, Prehal C, et al. Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage[J]. Nano Energy, 2017, 40: 49-64.
|
23 |
李成祥, 葛蔚. 一种基于计算机模拟的多孔结构可控设计方法: 202110104240.6[P]. 2021-01-26.
|
|
Li C X, Ge W. A controllable design method of porous structure based on computer simulation: 202110104240.6[P]. 2021-01-26.
|
24 |
魏格林, 李成祥, 葛蔚, 等. 催化剂孔道结构设计及孔内反应-扩散耦合模拟[J]. 过程工程学报, 2021, 21(3): 265-276.
|
|
Wei G L, Li C X, Ge I, et al. Simulation of pores-scale reaction-diffusion coupling for the design of catalyst structure[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 265-276.
|
25 |
傅献彩,沈文霞,姚天扬. 物理化学[M]. 4版. 北京:高等教育出版社, 1990.
|
|
Fu X F, Shen W S, Yao T Y. Physical Chemistry[M]. 4th ed. Beijing: Higher Education Press, 1990.
|
26 |
Li Y P, Zhao M C, Li C X, et al. Simulation study on the reaction-diffusion coupling in simple pore structures[J]. Langmuir, 2017, 33(42): 11804-11816.
|
27 |
Chen F G, Ge W, Wang L M, et al. Numerical study on gas-liquid nano-flows with pseudo-particle modeling and soft-particle molecular dynamics simulation[J]. Microfluidics and Nanofluidics, 2008, 5(5): 639-653.
|
28 |
Triplett K A, Ghiaasiaan S M, Abdel-Khalik S I, et al. Gas-liquid two-phase flow in microchannels Part I: Two-phase flow patterns[J]. International Journal of Multiphase Flow, 1999, 25(3): 377-394.
|
29 |
Sushko N, Cieplak M. Motion of grains, droplets, and bubbles in fluid-filled nanopores[J]. Physical Review E, 2001, 64(2): 021601.
|
30 |
Madabhushi R K, Leong M Y, Arienti M, et al. On the breakup regime map of liquid jet in crossflow[C]//19th International Conference on Liquid Atomization and Spray Systems. ILASS, 2006.
|