化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6073-6085.DOI: 10.11949/0438-1157.20211119
收稿日期:
2021-08-09
修回日期:
2021-10-12
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
邢卫红
作者简介:
柳波(1987—),男,博士,副教授,基金资助:
Bo LIU1(),Yichang PAN1(),Rongfei ZHOU1,2,Weihong XING1,2()
Received:
2021-08-09
Revised:
2021-10-12
Online:
2021-12-05
Published:
2021-12-22
Contact:
Weihong XING
摘要:
氢能具有燃烧值高、零碳排放等优势,发展氢能技术是实现“碳达峰、碳中和”战略的重要举措。当前,基于天然气和石油路线的制氢均存在将氢气从甲烷等烃分子中分离的过程。氢气/甲烷分离主要有变压吸附法、深冷精馏法以及膜分离法。分子筛膜具有精准分子筛分、高分离性能和稳定性好等优势,是低能耗分离氢气/甲烷最具发展潜力的膜材料。面向氢气/甲烷分离的应用需求,阐述了沸石分子筛膜和MOFs分子筛膜微结构调控策略、氢气/甲烷分离性能和构效关系的研究现状,分析了分子筛膜材料在氢气/甲烷分离领域的机遇和挑战。绘制了可与2008年聚合物膜Robeson上限图相比的分子筛膜性能数据图,并预测了分子筛膜在制氢分离领域经济可行的分离性能目标区域。
中图分类号:
柳波, 潘宜昌, 周荣飞, 邢卫红. 面向氢气/甲烷分离分子筛膜微结构调控的研究进展[J]. 化工学报, 2021, 72(12): 6073-6085.
Bo LIU, Yichang PAN, Rongfei ZHOU, Weihong XING. Research progress on microstructure regulation of molecular sieving membranes for H2/CH4 separation[J]. CIESC Journal, 2021, 72(12): 6073-6085.
1 | Ahmad H, Kamarudin S K, Minggu L J, et al. Hydrogen from photo-catalytic water splitting process: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 599-610. |
2 | You B, Sun Y. Innovative strategies for electrocatalytic water splitting[J]. Accounts of Chemical Research, 2018, 51(7): 1571-1580. |
3 | Fan Z Y, Weng W, Zhou J, et al. Catalytic decomposition of methane to produce hydrogen: a review[J]. Journal of Energy Chemistry, 2021, 58: 415-430. |
4 | Shah M, McCarthy M C, Sachdeva S, et al. Current status of metal-organic framework membranes for gas separations: promises and challenges[J]. Industrial & Engineering Chemistry Research, 2012, 51(5): 2179-2199. |
5 | Lu H T, Li W, Miandoab E S, et al. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review[J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 464-482. |
6 | Li P Y, Wang Z, Qiao Z H, et al. Recent developments in membranes for efficient hydrogen purification[J]. Journal of Membrane Science, 2015, 495: 130-168. |
7 | Li H, Haas-Santo K, Schygulla U, et al. Inorganic microporous membranes for H2 and CO2 separation—review of experimental and modeling progress[J]. Chemical Engineering Science, 2015, 127: 401-417. |
8 | Al-Mufachi N A, Rees N V, Steinberger-Wilkens R. Hydrogen selective membranes: a review of palladium-based dense metal membranes[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 540-551. |
9 | Ockwig N W, Nenoff T M. Membranes for hydrogen separation[J]. Chemical Reviews, 2007, 107(10): 4078-4110. |
10 | Huang A S, Liu Q, Wang N Y, et al. Covalent synthesis of dense zeolite LTA membranes on various 3-chloropropyltrimethoxysilane functionalized supports[J]. Journal of Membrane Science, 2013, 437: 57-64. |
11 | Mei W L, Du Y, Wu T Y, et al. High-flux CHA zeolite membranes for H2 separations[J]. Journal of Membrane Science, 2018, 565: 358-369. |
12 | Wang B, Hu N, Wang H M, et al. Improved AlPO-18 membranes for light gas separation[J]. Journal of Materials Chemistry A, 2015, 3(23): 12205-12212. |
13 | Zhang F, Zou X Q, Gao X, et al. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability[J]. Advanced Functional Materials, 2012, 22(17): 3583-3590. |
14 | Jin H, Wollbrink A, Yao R, et al. A novel CAU-10-H MOF membrane for hydrogen separation under hydrothermal conditions[J]. Journal of Membrane Science, 2016, 513: 40-46. |
15 | Kang Z X, Xue M, Fan L L, et al. Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane[J]. Energy Environ. Sci., 2014, 7(12): 4053-4060. |
16 | Rangnekar N, Mittal N, Elyassi B, et al. Zeolite membranes—a review and comparison with MOFs[J]. Chemical Society Reviews, 2015, 44(20): 7128-7154. |
17 | Zhong S L, Song S C, Wang B, et al. Fast preparation of ERI-structure AlPO-17 and SAPO-17 in the presences of isomorphous and heterogeneous seeds[J]. Microporous and Mesoporous Materials, 2018, 263: 11-20. |
18 | Wang L, Zhang C, Gao X C, et al. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature[J]. Journal of Membrane Science, 2017, 539: 152-160. |
19 | Dakhchoune M, Villalobos L F, Semino R, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nature Materials, 2021, 20(3): 362-369. |
20 | 刘益, 刘毅. 取向晶种法制备沸石分子筛膜研究进展[J]. 高等学校化学学报, 2021, 42(1): 117-132. |
Liu Y, Liu Y. Research progress on zeolite layer preparation via oriented seeded growth[J]. Chemical Journal of Chinese Universities, 2021, 42(1): 117-132. | |
21 | Lai Z P, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
22 | Zhou M, Korelskiy D, Ye P C, et al. A uniformly oriented MFI membrane for improved CO2 separation[J]. Angewandte Chemie International Edition, 2014, 53(13): 3492-3495. |
23 | Choi J, Ghosh S, Lai Z P, et al. Uniformly a-oriented MFI zeolite films by secondary growth[J]. Angewandte Chemie International Edition, 2006, 45(7): 1154-1158. |
24 | Agrawal K V, Topuz B, Pham T C T, et al. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers[J]. Advanced Materials, 2015, 27(21): 3243-3249. |
25 | Huang A S, Caro J. Highly oriented, neutral and cation-free AlPO4 LTA: from a seed crystal monolayer to a molecular sieve membrane[J]. Chemical Communications, 2011, 47(14): 4201. |
26 | Zhou M, Hedlund J. Facile preparation of hydrophobic colloidal MFI and CHA crystals and oriented ultrathin films[J]. Angewandte Chemie, 2018, 130(34): 11132-11136. |
27 | Kim E, Cai W X, Baik H, et al. Uniform Si-CHA zeolite layers formed by a selective sonication-assisted deposition method[J]. Angewandte Chemie International Edition, 2013, 52(20): 5280-5284. |
28 | Bing L C, Wang G J, Wang F, et al. Preparation of a preferentially oriented SAPO-34 membrane by secondary growth under microwave irradiation[J]. RSC Advances, 2016, 6(61): 56170-56173. |
29 | Tian Y Y, Fan L L, Wang Z Y, et al. Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO2/CH4 mixture[J]. Journal of Materials Chemistry, 2009, 19(41): 7698. |
30 | Wang B, Wu T Y, Yu M, et al. Highly ordered nanochannels in a nanosheet-directed thin zeolite nanofilm for precise and fast CO2 separation[J]. Small, 2020, 16(41): 2002836. |
31 | Wang B, Gao F, Zhang F, et al. Highly permeable and oriented AlPO-18 membranes prepared using directly synthesized nanosheets for CO2/CH4 separation[J]. Journal of Materials Chemistry A, 2019, 7(21): 13164-13172. |
32 | Le Q T, Nguyen D H P, Nguyen N M, et al. Gelless secondary growth of zeolitic aluminophosphate membranes on porous supports with high performance in CO2/CH4 separation[J]. ChemSusChem, 2020, 13(7): 1720-1724. |
33 | Zheng Y H, Hu N, Wang H M, et al. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation[J]. Journal of Membrane Science, 2015, 475: 303-310. |
34 | Wang B, Zheng Y H, Zhang J F, et al. Separation of light gas mixtures using zeolite SSZ-13 membranes[J]. Microporous and Mesoporous Materials, 2019, 275: 191-199. |
35 | Li Y M, He S N, Shu C J, et al. A facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separations[J]. Journal of Membrane Science, 2021, 632: 119349. |
36 | Zhou L, Yang J H, Li G, et al. Highly H2 permeable SAPO-34 membranes by steam-assisted conversion seeding[J]. International Journal of Hydrogen Energy, 2014, 39(27): 14949-14954. |
37 | Tang H B, Bai L, Wang M Q, et al. Fast synthesis of thin high silica SSZ-13 zeolite membrane using oil-bath heating[J]. International Journal of Hydrogen Energy, 2019, 44(41): 23107-23119. |
38 | Kida K, Maeta Y, Yogo K. Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation[J]. Separation and Purification Technology, 2018, 197: 116-121. |
39 | Zhou J J, Gao F, Sun K, et al. Green synthesis of highly CO2-selective CHA zeolite membranes in all-silica and fluoride-free solution for CO2/CH4 separations[J]. Energy & Fuels, 2020, 34(9): 11307-11314. |
40 | Yu L, Nobandegani M S, Holmgren A, et al. Highly permeable and selective tubular zeolite CHA membranes[J]. Journal of Membrane Science, 2019, 588: 117224. |
41 | Wang M Q, Bai L, Li M, et al. Ultrafast synthesis of thin all-silica DDR zeolite membranes by microwave heating[J]. Journal of Membrane Science, 2019, 572: 567-579. |
42 | Lee T, Choi J, Tsapatsis M. On the performance of c-oriented MFI zeolite membranes treated by rapid thermal processing[J]. Journal of Membrane Science, 2013, 436: 79-89. |
43 | Chang N, Tang H B, Bai L, et al. Optimized rapid thermal processing for the template removal of SAPO-34 zeolite membranes[J]. Journal of Membrane Science, 2018, 552: 13-21. |
44 | Araki S, Yamashita R, Li K, et al. Preparation and gas permeation properties of all-silica CHA zeolite hollow fiber membranes prepared on amorphous-silica hollow fibers[J]. Journal of Membrane Science, 2021, 634: 119338. |
45 | Liu B, Zhou R F, Yogo K, et al. Preparation of CHA zeolite (chabazite) crystals and membranes without organic structural directing agents for CO2 separation[J]. Journal of Membrane Science, 2019, 573: 333-343. |
46 | Yu M, Funke H H, Noble R D, et al. H2 separation using defect-free, inorganic composite membranes[J]. Journal of the American Chemical Society, 2011, 133(6): 1748-1750. |
47 | Zhou R F, Wang H M, Wang B, et al. Defect-patching of zeolite membranes by surface modification using siloxane polymers for CO2 separation[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7516-7523. |
48 | Yang S W, Cao Z S, Arvanitis A, et al. DDR-type zeolite membrane synthesis, modification and gas permeation studies[J]. Journal of Membrane Science, 2016, 505: 194-204. |
49 | Kosinov N, Auffret C, Borghuis G J, et al. Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes[J]. Journal of Membrane Science, 2015, 484: 140-145. |
50 | Kida K, Maeta Y, Yogo K. Preparation and gas permeation properties on pure silica CHA-type zeolite membranes[J]. Journal of Membrane Science, 2017, 522: 363-370. |
51 | Araki S, Ishii H, Imasaka S, et al. Synthesis and gas permeation properties of chabazite-type titanosilicate membranes synthesized using nano-sized seed crystals[J]. Microporous and Mesoporous Materials, 2020, 292: 109798. |
52 | Wu T Y, Shu C J, Liu S, et al. Separation performance of Si-CHA zeolite membrane for a binary H2/CH4 mixture and ternary and quaternary mixtures containing impurities[J]. Energy & Fuels, 2020, 34(9): 11650-11659. |
53 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
54 | Hou J, Zhang H C, Simon G P, et al. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions[J]. Advanced Materials, 2020, 32(18): 1902009. |
55 | Yang L, Qian S, Wang X, et al. Energy-efficient separation alternatives: metal-organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews, 2020, 49(15): 5359-5406. |
56 | Qiu S, Xue M, Zhu G. Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. |
57 | Hu Y, Dong X, Nan J, et al. Metal-organic framework membranes fabricated via reactive seeding[J]. Chemical Communications, 2011, 47(2): 737-739. |
58 | Friebe S, Geppert B, Steinbach F, et al. Metal-organic framework UiO-66 layer: a highly oriented membrane with good selectivity and hydrogen permeance[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12878-12885. |
59 | Bux H, Liang F Y, Li Y S, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society, 2009, 131(44): 16000-16001. |
60 | Huang A, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. Journal of the American Chemical Society, 2010, 132(44): 15562-15564. |
61 | Ma X X, Wan Z, Li Y H, et al. Anisotropic gas separation in oriented ZIF-95 membranes prepared by vapor-assisted in-plane epitaxial growth[J]. Angewandte Chemie International Edition, 2020, 59(47): 20858-20862. |
62 | Wang X R, Chi C L, Zhang K, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation[J]. Nature Communications, 2017, 8: 14460. |
63 | Nian P, Liu H O, Zhang X F. Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation[J]. Journal of Membrane Science, 2019, 573: 200-209. |
64 | Li Y, Liu H, Wang H, et al. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H2/CO2 separation[J]. Chemical Science, 2018, 9(17): 4132-4141. |
65 | Fairen-Jimenez D, Moggach S A, Wharmby M T, et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations[J]. Journal of the American Chemical Society, 2011, 133(23): 8900-8902. |
66 | Zhang X F, Liu Y G, Kong L Y, et al. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes[J]. Journal of Materials Chemistry A, 2013, 1(36): 10635. |
67 | Bux H, Feldhoff A, Cravillon J, et al. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation[J]. Chemistry of Materials, 2011, 23(8): 2262-2269. |
68 | Cacho-Bailo F, Catalán-Aguirre S, Etxeberría-Benavides M, et al. Metal-organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis[J]. Journal of Membrane Science, 2015, 476: 277-285. |
69 | Pan Y, Lai Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions[J]. Chemical Communications (Cambridge, England), 2011, 47(37): 10275-10277. |
70 | Kong L Y, Zhang X F, Liu H O, et al. Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer[J]. Journal of Membrane Science, 2015, 490: 354-363. |
71 | Huang A, Liu Q, Wang N, et al. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity[J]. Journal of the American Chemical Society, 2014, 136(42): 14686-14689. |
72 | Babu D J, He G W, Hao J, et al. Restricting lattice flexibility in polycrystalline metal-organic framework membranes for carbon capture[J]. Advanced Materials, 2019, 31(28): 1900855. |
73 | Huang A S, Wang N Y, Kong C L, et al. Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance[J]. Angewandte Chemie International Edition, 2012, 51(42): 10551-10555. |
74 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
75 | 郝阿辉, 刘晓红, 刘秀凤, 等. 微波辅助二次生长法合成SAPO-34分子筛膜与关键影响因素[J]. 化工学报, 2017, 68(2): 716-722. |
Hao A H, Liu X H, Liu X F, et al. Synthesis of SAPO-34 membranes and critical influence factors in microwave-assisted secondary growth[J]. CIESC Journal, 2017, 68(2): 716-722. | |
76 | 王绍宇, 马翰泽, 吴洪, 等. 有机框架膜在气体分离中的研究进展[J]. 化工学报, 2021, 72(7): 3488-3510. |
Wang S Y, Ma H Z, Wu H, et al. Research advances of organic framework membranes in gas separation[J]. CIESC Journal, 2021, 72(7): 3488-3510. | |
77 | 肖红岩, 郭明钢, 贺高红, 等. 氢气分离膜内嵌改进蒸汽活化转化丙烷脱氢过程模拟和经济分析[J]. 化工进展, 2019, 38(12): 5257-5263. |
Xiao H Y, Guo M G, He G H, et al. Retrofit and optimization of steam active reforming (STAR) propane dehydrogenation technology with embedded hydrogen membrane separation[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5257-5263. | |
78 | Ozcan A, Keskin S. Effects of molecular simulation parameters on predicting gas separation performance of ZIFs[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(9): 1707-1718. |
79 | Kusakabe K, Kuroda T, Uchino K, et al. Gas permeation properties of ion-exchanged faujasite-type zeolite membranes[J]. AIChE Journal, 1999, 45(6): 1220-1226. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[9] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[10] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[11] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[12] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[13] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[14] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[15] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||