化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6062-6072.DOI: 10.11949/0438-1157.20211082
收稿日期:
2021-08-02
修回日期:
2021-10-12
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
贺高红
作者简介:
陈艺飞(1997—),男,硕士研究生,基金资助:
Yifei CHEN(),Jiaming WANG,Xuehua RUAN,Gaohong HE()
Received:
2021-08-02
Revised:
2021-10-12
Online:
2021-12-05
Published:
2021-12-22
Contact:
Gaohong HE
摘要:
近年来,全球二氧化碳排放超过370亿吨/年,对气候和自然环境造成严重影响,亟需发展碳捕集、利用与封存技术。气体膜分离是一种条件温和、操作简单的无相变分离技术,随着高渗透性、高选择性膜材料的不断涌现,逐渐成为全球碳捕集技术的主要发展方向。聚离子液体膜材料中含有大量高度亲和二氧化碳的功能基团,有望实现超高渗透选择性,被誉为下一代气体分离膜材料。综述了聚离子液体膜材料的研究进展,以渗透机制为主线重点介绍了面向碳捕集的阳离子型聚离子液体膜材料(主链型和支链型)的设计合成,包括阳离子和阴离子基团的选择,合成途径的选择,以及聚离子液体膜的结构设计优化。讨论了聚离子液体作为二氧化碳分离膜材料的优势和面临的挑战。
中图分类号:
陈艺飞, 王佳铭, 阮雪华, 贺高红. 聚离子液体二氧化碳分离膜材料的研究进展[J]. 化工学报, 2021, 72(12): 6062-6072.
Yifei CHEN, Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress in poly(ionic liquids) materials for CO2 membrane separation[J]. CIESC Journal, 2021, 72(12): 6062-6072.
1 | Ballantyne A P, Ciais P, Miller J B. Cautious optimism and incremental goals toward stabilizing atmospheric CO2[J]. Earth's Future, 2018, 6(12): 1632-1637. |
2 | Bruckner T, Bashmakov I A, Mulugetta Y, et al. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2014. |
3 | International Energy Agency (IEA). Energy technology perspectives 2015 : mobilising innovation to accelerate climate action [EB/OL]. [2021-06-07]. . |
4 | Vaughan A. China's surprising ambition[J]. New Scientist, 2020, 248(3302): 18. |
5 | Lund H. Renewable energy strategies for sustainable development[J]. Energy, 2007, 32(6): 912-919. |
6 | Jiang K, Ashworth P, Zhang S Y, et al. China's carbon capture, utilization and storage (CCUS) policy: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109601. |
7 | 阮雪华, 辛月, 张宁, 等. 利用烟气废热的LiBr制冷液化粗CO2节能新工艺[J]. 化工进展, 2018, 37(5): 1985-1991. |
Ruan X H, Xin Y, Zhang N, et al. Low-grade heat utilization and CO2 liquefaction process based on LiBr absorption refrigeration[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1985-1991. | |
8 | Ruan X H, He G H, Li B J, et al. Chemical potential analysis for directing the optimal design of gas membrane separation frameworks[J]. Chemical Engineering Science, 2014, 107: 245-255. |
9 | Dai Y, Ruan X H, Yan Z J, et al. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture[J]. Separation and Purification Technology, 2016, 166: 171-180. |
10 | 顾子樵. Purisol气体净化法[J]. 化工厂设计, 1989(2): 15-19, 9. |
Gu Z Q. Purisol gas purifying process [J]. Chemical Plant Design, 1989(2): 15-19, 9. | |
11 | Hernandez R J, Hurdeman T L, 徐俊华. Selexol溶剂脱碳法[J]. 化肥设计, 1991, 29(6): 57-58, 56. |
Hernandez R J, Hurdeman T L, Xu J H. Solvent decarburization [J]. Chemical Fertilizer Design, 1991, 29(6): 57-58, 56. | |
12 | Dashti H, Zhehao Yew L, Lou X. Recent advances in gas hydrate-based CO2 capture[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 195-207. |
13 | Weller S, Steiner W A. Separation of gases by fractional permeation through membranes[J]. Journal of Applied Physics, 1950, 21(4): 279-283. |
14 | Tomé L C, Marrucho I M. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes[J]. Chemical Society Reviews, 2016, 45(10): 2785-2824. |
15 | Dai Z D, Noble R D, Gin D L, et al. Combination of ionic liquids with membrane technology: a new approach for CO2 separation[J]. Journal of Membrane Science, 2016, 497: 1-20. |
16 | Han X X, Armstrong D W. Ionic liquids in separations[J]. Accounts of Chemical Research, 2007, 40 (11): 1079-1086. |
17 | Noble R D, Gin D L. Perspective on ionic liquids and ionic liquid membranes[J]. Journal of Membrane Science, 2011, 369(1/2): 1-4. |
18 | Gin D L, Noble R D. Designing the next generation of chemical separation membranes[J]. Science, 2011, 332(6030): 674-676. |
19 | Qian W, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications[J]. Chemical Society Reviews, 2017, 46(4): 1124-1159. |
20 | Camper D, Bara J, Koval C, et al. Bulk-fluid solubility and membrane feasibility of rmim-based room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2006, 45(18): 6279-6283. |
21 | Bara J E, Lessmann S, Gabriel C J, et al. Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes[J]. Industrial & Engineering Chemistry Research, 2007, 46(16): 5397-5404. |
22 | Friess K, Izák P, Kárászová M, et al. A review on ionic liquid gas separation membranes[J]. Membranes, 2021, 11(2): 97. |
23 | Ding S J, Tang H D, Radosz M, et al. Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(22): 5794-5801. |
24 | Marcilla R, Blazquez J A, Fernandez R, et al. Synthesis of novel polycations using the chemistry of ionic liquids[J]. Macromolecular Chemistry and Physics, 2005, 206(2): 299-304. |
25 | Tang H D, Tang J B, Ding S J, et al. Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(7): 1432-1443. |
26 | Green M D, Long T E. Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies[J]. Polymer Reviews, 2009, 49(4): 291-314. |
27 | Snedden P, Cooper A I, Scott K, et al. Cross-linked polymer-ionic liquid composite materials[J]. Macromolecules, 2003, 36(12): 4549-4556. |
28 | Marcilla R, Alberto Blazquez J, Rodriguez J, et al. Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(1): 208-212. |
29 | Bernard F L, dos Santos L M, Schwab M B, et al. Polyurethane-based poly (ionic liquid)s for CO2 removal from natural gas[J]. Journal of Applied Polymer Science, 2019, 136(20): 47536. |
30 | Kujawa J, Rynkowska E, Fatyeyeva K, et al. Preparation and characterization of cellulose acetate propionate films functionalized with reactive ionic liquids[J]. Polymers, 2019, 11 (7): 1217. |
31 | Xu X C, Wang J J, Dong J, et al. Ionic polyimide membranes containing Tröger's base: synthesis, microstructure and potential application in CO2 separation[J]. Journal of Membrane Science, 2020, 602: 117967. |
32 | Ohno H, Yoshizawa M. Preparation and properties of polymerized ionic liquids as film electrolytes[M]//ACS Symposium Series. Washington DC: American Chemical Society, 2005: 159-170. |
33 | Duong P H H, Daumann K, Hong P Y, et al. Interfacial polymerization of zwitterionic building blocks for high-flux nanofiltration membranes[J]. Langmuir, 2019, 35(5): 1284-1293. |
34 | Petroff M, Garcia E A, Herrera-Alonso M, et al. Ionic strength-dependent interactions and dimensions of adsorbed zwitterionic copolymers[J]. Langmuir, 2019, 35(14): 4976-4985. |
35 | 李晓翠. 接枝型聚离子液体制备及CO2渗透分离性能[D]. 大连: 大连理工大学, 2017. |
Li X C. Synthesis and performance of grafted polymerized ionic liquids for CO2 separation membranes[D]. Dalian: Dalian University of Technology, 2017. | |
36 | Kumbharkar S C, Bhavsar R S, Kharul U K. Film forming polymeric ionic liquids (PILs) based on polybenzimidazoles for CO2 separation[J]. RSC Advances, 2014, 4(9): 4500-4503. |
37 | Guiver M D, Yahia M, Dal-Cin M M, et al. Gas transport in a polymer of intrinsic microporosity (PIM-1) substituted with pseudo-ionic liquid tetrazole-type structures[J]. Macromolecules, 2020, 53(20): 8951-8959. |
38 | van Amerongen G J. The permeability of different rubbers to gases and its relation to diffusivity and solubility[J]. Journal of Applied Physics, 1946, 17(11): 972-985. |
39 | Han Y, Wu D Z, Ho W S W. Nanotube-reinforced facilitated transport membrane for CO2/N2 separation with vacuum operation[J]. Journal of Membrane Science, 2018, 567: 261-271. |
40 | Kamio E, Tanaka M, Shirono Y, et al. Hollow fiber-type facilitated transport membrane composed of a polymerized ionic liquid-based gel layer with amino acidate as the CO2 carrier[J]. Industrial & Engineering Chemistry Research, 2020, 59(5): 2083-2092. |
41 | McDanel W M, Cowan M G, Chisholm N O, et al. Fixed-site-carrier facilitated transport of carbon dioxide through ionic-liquid-based epoxy-amine ion gel membranes[J]. Journal of Membrane Science, 2015, 492: 303-311. |
42 | Bara J E, Hatakeyama E S, Gabriel C J, et al. Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes[J]. Journal of Membrane Science, 2008, 316(1/2): 186-191. |
43 | Carlisle T K, Bara J E, Lafrate A L, et al. Main-chain imidazolium polymer membranes for CO2 separations: an initial study of a new ionic liquid-inspired platform[J]. Journal of Membrane Science, 2010, 359(1/2): 37-43. |
44 | Mittenthal M S, Flowers B S, Bara J E, et al. Ionic polyimides: hybrid polymer architectures and composites with ionic liquids for advanced gas separation membranes[J]. Industrial & Engineering Chemistry Research, 2017, 56(17): 5055-5069. |
45 | Shaligram S V, Rewar A S, Wadgaonkar P P, et al. Incorporation of rigid polyaromatic groups in polybenzimidazole-based polymeric ionic liquids: assertive effects on gas permeation properties[J]. Polymer, 2016, 93: 30-36. |
46 | Shaplov A S, Morozova S M, Lozinskaya E I, et al. Turning into poly(ionic liquid)s as a tool for polyimide modification: synthesis, characterization and CO2 separation properties[J]. Polymer Chemistry, 2016, 7(3): 580-591. |
47 | Jourdain A, Antoniuk I, Serghei A, et al. 1, 2, 3-Triazolium-based linear ionic polyurethanes[J]. Polymer Chemistry, 2017, 8(34): 5148-5156. |
48 | Chi W S, Hong S U, Jung B, et al. Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes[J]. Journal of Membrane Science, 2013, 443: 54-61. |
49 | Ansaloni L, Nykaza J R, Ye Y S, et al. Influence of water vapor on the gas permeability of polymerized ionic liquids membranes[J]. Journal of Membrane Science, 2015, 487: 199-208. |
50 | Carlisle T K, Wiesenauer E F, Nicodemus G D, et al. Ideal CO2/light gas separation performance of poly(vinylimidazolium) membranes and poly(vinylimidazolium)-ionic liquid composite films[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1023-1032. |
51 | Li P, Paul D R, Chung T S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas[J]. Green Chemistry, 2012, 14(4): 1052. |
52 | Zhang C F, Zhang W H, Gao H, et al. Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation[J]. Journal of Membrane Science, 2017, 528: 72-81. |
53 | Adzima B J, Venna S R, Klara S S, et al. Modular polymerized ionic liquid block copolymer membranes for CO2/N2 separation[J]. Journal of Materials Chemistry A, 2014, 2(21): 7967-7972. |
54 | Cong H L, Yu B, Tang J G, et al. Ionic liquid modified poly(2, 6-dimethyl-1, 4-phenylene oxide) for CO2 separation[J]. Journal of Polymer Research, 2012, 19(2): 1-6. |
55 | Sakaguchi T, Ito H, Masuda T, et al. Highly CO2-permeable and -permselective poly(diphenylacetylene)s having imidazolium salts: synthesis, characterization, gas permeation properties, and effects of counter anion[J]. Polymer, 2013, 54(25): 6709-6715. |
56 | Gye B, Kammakakam I, You H, et al. PEG-imidazolium-incorporated polyimides as high-performance CO2-selective polymer membranes: the effects of PEG-imidazolium content[J]. Separation and Purification Technology, 2017, 179: 283-290. |
57 | Qu Z H, Zhao R, Wu H, et al. Polyelectrolyte membranes with tunable hollow CO2-philic clusters via sacrificial template for biogas upgrading[J]. Journal of Membrane Science, 2020, 612: 118445. |
58 | Nikolaeva D, Verachtert K, Azcune I, et al. Influence of ionic liquid-like cationic pendants composition in cellulose based polyelectrolytes on membrane-based CO2 separation[J]. Carbohydrate Polymers, 2021, 255: 117375. |
59 | Tomé L C, Gouveia A S L, Freire C S R, et al. Polymeric ionic liquid-based membranes: influence of polycation variation on gas transport and CO2 selectivity properties[J]. Journal of Membrane Science, 2015, 486: 40-48. |
60 | Bara J E, Gabriel C J, Hatakeyama E S, et al. Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents[J]. Journal of Membrane Science, 2008, 321(1): 3-7. |
61 | Hu X D, Tang J B, Blasig A, et al. CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen[J]. Journal of Membrane Science, 2006, 281(1/2): 130-138. |
62 | Qu Z H, Wu H, Zhou Y, et al. Constructing interconnected ionic cluster network in polyelectrolyte membranes for enhanced CO2 permeation[J]. Chemical Engineering Science, 2019, 199: 275-284. |
63 | Cowan M G, Masuda M, McDanel W M, et al. Phosphonium-based poly(ionic liquid) membranes: the effect of cation alkyl chain length on light gas separation properties and Ionic conductivity[J]. Journal of Membrane Science, 2016, 498: 408-413. |
64 | Jeffrey Horne W, Andrews M A, Shannon M S, et al. Effect of branched and cycloalkyl functionalities on CO2 separation performance of poly(IL) membranes[J]. Separation and Purification Technology, 2015, 155: 89-95. |
65 | Nguyen P T, Wiesenauer E F, Gin D L, et al. Effect of composition and nanostructure on CO2/N2 transport properties of supported alkyl-imidazolium block copolymer membranes[J]. Journal of Membrane Science, 2013, 430: 312-320. |
66 | Wiesenauer E F, Nguyen P T, Newell B S, et al. Imidazolium-containing, hydrophobic-ionic-hydrophilic ABC triblock copolymers: synthesis, ordered phase-separation, and supported membrane fabrication[J]. Soft Matter, 2013, 9(33): 7923. |
67 | Bhavsar R S, Kumbharkar S C, Kharul U K. Investigation of gas permeation properties of film forming polymeric ionic liquids (PILs) based on polybenzimidazoles[J]. Journal of Membrane Science, 2014, 470: 494-503. |
68 | Rewar A S, Bhavsar R S, Sreekumar K, et al. Polybenzimidazole based polymeric ionic liquids (PILs): effects of controlled degree of N-quaternization on physical and gas permeation properties[J]. Journal of Membrane Science, 2015, 481: 19-27. |
69 | Shaligram S V, Wadgaonkar P P, Kharul U K. Polybenzimidazole-based polymeric ionic liquids (PILs): effects of 'substitution asymmetry' on CO2 permeation properties[J]. Journal of Membrane Science, 2015, 493: 403-413. |
70 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[3] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[4] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[5] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[9] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[12] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[13] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[14] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[15] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||