1 |
Niu S, Wang Z, Yu M, et al. MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage[J]. ACS Nano, 2018, 12(4): 3928-3937.
|
2 |
Wang Y Z, Zhou D, Palomares V, et al. Revitalising sodium-sulfur batteries for non-high-temperature operation: a crucial review[J]. Energy & Environmental Science, 2020, 13(11): 3848-3879.
|
3 |
Loaiza L C, Monconduit L, Seznec V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism[J]. Small, 2020, 16(5): 1905260.
|
4 |
Gong D C, Wei C Y, Liang Z W, et al. Recent advances on sodium-ion batteries and sodium dual-ion batteries: state-of-the-art Na+ host anode materials[J]. Small Science, 2021, 1(6): 2100014.
|
5 |
Yang X M, Rogach A L. Anodes and sodium-free cathodes in sodium ion batteries[J]. Advanced Energy Materials, 2020, 10(22): 2000288.
|
6 |
Cheng X L, Shao R W, Li D J, et al. A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage[J]. Advanced Functional Materials, 2021, 31(22): 2011264.
|
7 |
Yang H, Chen L W, He F, et al. Optimizing the void size of yolk-shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries[J]. Nano Letters, 2020, 20(1): 758-767.
|
8 |
Liu Y Z, Yang C H, Zhang Q Y, et al. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries[J]. Energy Storage Materials, 2019, 22: 66-95.
|
9 |
Ali Z, Zhang T, Asif M, et al. Transition metal chalcogenide anodes for sodium storage[J]. Materials Today, 2020, 35: 131-167.
|
10 |
Chen B, Chao D L, Liu E Z, et al. Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level[J]. Energy & Environmental Science, 2020, 13(4): 1096-1131.
|
11 |
Hu Z, Wang L X, Zhang K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries[J]. Angewandte Chemie, 2014, 126(47): 13008-13012.
|
12 |
Zhu C B, Mu X K, van Aken P A, et al. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage[J]. Angewandte Chemie, 2014, 126(8): 2184-2188.
|
13 |
Zhang L, Wu H B, Yan Y, et al. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting[J]. Energy Environ. Sci., 2014, 7(10): 3302-3306.
|
14 |
Qiao Y, Wu J W, Cheng X G, et al. Construction of robust coupling interface between MoS2 and nitrogen doped graphene for high performance sodium ion batteries[J]. Journal of Energy Chemistry, 2020, 48: 435-442.
|
15 |
Zhang W L, Zhou H H, Huang Z Y, et al. 3D hierarchical microspheres constructed by ultrathin MoS2-C nanosheets as high-performance anode material for sodium-ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 307-315.
|
16 |
胡平, 陈震宇, 王快社, 等. 二维层状二硫化钼复合材料的研究进展及发展趋势[J]. 化工学报, 2017, 68(4): 1286-1298.
|
|
Hu P, Chen Z Y, Wang K S, et al. Present status and perspective of two-dimensional layered molybdenum disulfide and its composites[J]. CIESC Journal, 2017, 68(4): 1286-1298.
|
17 |
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.
|
18 |
Lauritsen J V, Kibsgaard J, Helveg S, et al. Size-dependent structure of MoS2 nanocrystals[J]. Nature Nanotechnology, 2007, 2(1): 53-58.
|
19 |
Shao Q J, Lu P F, Xu L, et al. Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li-S batteries[J]. Journal of Energy Chemistry, 2020, 51: 262-271.
|
20 |
Ru J J, He T, Chen B J, et al. Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries[J]. Angewandte Chemie, 2020, 132(34): 14729-14735.
|
21 |
Zhou J, Qin J, Zhang X, et al. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode[J]. ACS Nano, 2015, 9(4): 3837-3848.
|
22 |
Lu Y Y, Zhao Q, Zhang N, et al. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres[J]. Advanced Functional Materials, 2016, 26(6): 911-918.
|
23 |
Zhang J, Han J W, Yun Q B, et al. What is the right carbon for practical anode in alkali metal ion batteries? [J]. Small Science, 2021, 1(3): 2000063.
|
24 |
Han M S, Lin Z J, Yu J. Ultrathin MoS2 nanosheets homogenously embedded in a N, O-codoped carbon matrix for high-performance lithium and sodium storage[J]. Journal of Materials Chemistry A, 2019, 7(9): 4804-4812.
|
25 |
Liu J, Yuan H, Tao X Y, et al. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries[J]. EcoMat, 2020, 2(1): e12019.
|
26 |
Ling Z, Wang Z Y, Zhang M D, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials, 2016, 26(1): 111-119.
|
27 |
Hwang H, Kim H, Cho J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2011, 11(11): 4826-4830.
|
28 |
Li X H, Antonietti M. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: carbocatalysts for selective oxidation[J]. Angewandte Chemie International Edition, 2013, 52(17): 4572-4576.
|
29 |
Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials, 2009, 19(3): 438-447.
|
30 |
Liu K K, Zhang W J, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Letters, 2012, 12(3): 1538-1544.
|
31 |
Li J S, Wang Y, Liu C H, et al. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution[J]. Nature Communications, 2016, 7: 11204.
|
32 |
Sun W Y, Hu Z, Wang C Y, et al. Effects of carbon content on the electrochemical performances of MoS2–C nanocomposites for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22168-22174.
|
33 |
Wang X F, Shen X, Wang Z X, et al. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation[J]. ACS Nano, 2014, 8(11): 11394-11400.
|
34 |
Ryu W H, Jung J W, Park K, et al. Vine-like MoS2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries[J]. Nanoscale, 2014, 6(19): 10975-10981.
|
35 |
Ding Y L, Kopold P, Hahn K, et al. A lamellar hybrid assembled from metal disulfide nanowall arrays anchored on a carbon layer: in situ hybridization and improved sodium storage[J]. Advanced Materials, 2016, 28(35): 7774-7782.
|
36 |
Chen B, Wang T S, Zhao S Y, et al. Efficient reversible conversion between MoS2 and Mo/Na2S enabled by graphene-supported single atom catalysts[J]. Advanced Materials, 2021, 33(12): 2007090.
|
37 |
David L, Bhandavat R, Singh G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano, 2014, 8(2): 1759-1770.
|
38 |
Wu X H, Wang Z Y, Yu M Z, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials, 2017, 29(24): 1607017.
|