化工学报 ›› 2021, Vol. 72 ›› Issue (2): 1036-1046.DOI: 10.11949/0438-1157.20201393
收稿日期:
2020-10-09
修回日期:
2020-12-25
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
张东辉
作者简介:
钮朝阳(1997—),男,硕士研究生,基金资助:
NIU Zhaoyang(),JIANG Nan,SHEN Yuanhui,WU Tongbo,LIU Bing,ZHANG Donghui()
Received:
2020-10-09
Revised:
2020-12-25
Online:
2021-02-05
Published:
2021-02-05
Contact:
ZHANG Donghui
摘要:
目前工业上主要通过变压吸附技术从蒸汽甲烷重整气中制取氢产品气。然而,能源需求量的快速增加使得传统变压吸附技术在产量方面的不足越发明显。为此,进行了快速变压吸附从蒸汽甲烷重整气中制取氢气的模拟研究。采用活性炭和5A分子筛作为吸附剂,并以测得的原料气中各组分在两种吸附剂上的吸附数据为基础,进行了六塔快速变压吸附工艺的数值模拟与分析。在分析了塔内温度、压力和固相的浓度分布后,探究了进料流量、双层吸附剂高度比以及冲洗进料比三个操作参数对于快速变压吸附工艺性能的影响,结果表明:原料气组成为H2/CH4/CO/CO2=76%/3.5%/0.5%/20%,吸附压力为22 bar(1 bar=105 Pa),解吸吹扫压力为1.0 bar,处理量为0.8875 mol·s-1,吸附剂床层高度比为0.5∶0.5,冲洗进料比为22.37%时,可获得H2纯度99.90%,回收率69.88%,此时H2产量为0.4713 mol·s-1。相比之下,氢气纯度为99.90%时,尽管PSA工艺回收率为83.40%,但处理量只有0.39 mol·s-1,因此H2产量仅为0.2472 mol·s-1。
中图分类号:
钮朝阳, 江南, 沈圆辉, 吴统波, 刘冰, 张东辉. 快速变压吸附制氢工艺的模拟与分析[J]. 化工学报, 2021, 72(2): 1036-1046.
NIU Zhaoyang, JIANG Nan, SHEN Yuanhui, WU Tongbo, LIU Bing, ZHANG Donghui. Simulation and analysis of rapid pressure swing adsorption for hydrogen production[J]. CIESC Journal, 2021, 72(2): 1036-1046.
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 |
---|---|---|---|---|---|---|
10 | AD1 | ER1 | ER3 | BD | ED3 | ED1 |
15 | AD2 | PR | ER2 | PUR | COD | ED2 |
10 | ED1 | AD1 | ER1 | ER3 | BD | ED3 |
15 | ED2 | AD2 | PR | ER2 | PUR | COD |
10 | ED3 | ED1 | AD1 | ER1 | ER3 | BD |
15 | COD | ED2 | AD2 | PR | ER2 | PUR |
10 | BD | ED3 | ED1 | AD1 | ER1 | ER3 |
15 | PUR | COD | ED2 | AD2 | PR | ER2 |
10 | ER3 | BD | ED3 | ED1 | AD1 | ER1 |
15 | ER2 | PUR | COD | ED2 | AD2 | PR |
10 | ER1 | ER3 | BD | ED3 | ED1 | AD1 |
15 | PR | ER2 | PUR | COD | ED2 | AD2 |
表1 六塔RPSA时序
Table 1 The schedule of six-bed RPSA
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 |
---|---|---|---|---|---|---|
10 | AD1 | ER1 | ER3 | BD | ED3 | ED1 |
15 | AD2 | PR | ER2 | PUR | COD | ED2 |
10 | ED1 | AD1 | ER1 | ER3 | BD | ED3 |
15 | ED2 | AD2 | PR | ER2 | PUR | COD |
10 | ED3 | ED1 | AD1 | ER1 | ER3 | BD |
15 | COD | ED2 | AD2 | PR | ER2 | PUR |
10 | BD | ED3 | ED1 | AD1 | ER1 | ER3 |
15 | PUR | COD | ED2 | AD2 | PR | ER2 |
10 | ER3 | BD | ED3 | ED1 | AD1 | ER1 |
15 | ER2 | PUR | COD | ED2 | AD2 | PR |
10 | ER1 | ER3 | BD | ED3 | ED1 | AD1 |
15 | PR | ER2 | PUR | COD | ED2 | AD2 |
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 |
---|---|---|---|---|---|---|
40 | AD1 | ER1 | ER3 | BD | ED3 | ED1 |
50 | AD2 | PR | ER2 | PUR | COD | ED2 |
40 | ED1 | AD1 | ER1 | ER3 | BD | ED3 |
50 | ED2 | AD2 | PR | ER2 | PUR | COD |
40 | ED3 | ED1 | AD1 | ER1 | ER3 | BD |
50 | COD | ED2 | AD2 | PR | ER2 | PUR |
40 | BD | ED3 | ED1 | AD1 | ER1 | ER3 |
50 | PUR | COD | ED2 | AD2 | PR | ER2 |
40 | ER3 | BD | ED3 | ED1 | AD1 | ER1 |
50 | ER2 | PUR | COD | ED2 | AD2 | PR |
40 | ER1 | ER3 | BD | ED3 | ED1 | AD1 |
50 | PR | ER2 | PUR | COD | ED2 | AD2 |
表2 六塔PSA时序
Table 2 The schedule of six-bed PSA
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 |
---|---|---|---|---|---|---|
40 | AD1 | ER1 | ER3 | BD | ED3 | ED1 |
50 | AD2 | PR | ER2 | PUR | COD | ED2 |
40 | ED1 | AD1 | ER1 | ER3 | BD | ED3 |
50 | ED2 | AD2 | PR | ER2 | PUR | COD |
40 | ED3 | ED1 | AD1 | ER1 | ER3 | BD |
50 | COD | ED2 | AD2 | PR | ER2 | PUR |
40 | BD | ED3 | ED1 | AD1 | ER1 | ER3 |
50 | PUR | COD | ED2 | AD2 | PR | ER2 |
40 | ER3 | BD | ED3 | ED1 | AD1 | ER1 |
50 | ER2 | PUR | COD | ED2 | AD2 | PR |
40 | ER1 | ER3 | BD | ED3 | ED1 | AD1 |
50 | PR | ER2 | PUR | COD | ED2 | AD2 |
数学模型 | ||
---|---|---|
质量守恒 | (1) | |
(2) | ||
(3) | ||
能量守恒 | (4) | |
(5) | ||
(6) | ||
动量守恒 | (7) | |
吸附等温式 | (8) | |
线性推动力方程 | (9) |
表3 吸附塔数学模型
Table 3 Mathematical model of adsorption bed
数学模型 | ||
---|---|---|
质量守恒 | (1) | |
(2) | ||
(3) | ||
能量守恒 | (4) | |
(5) | ||
(6) | ||
动量守恒 | (7) | |
吸附等温式 | (8) | |
线性推动力方程 | (9) |
设备 | 数学模型 | |
---|---|---|
压缩机 | (10) | |
缓冲罐 | (11) | |
线性阀门 | (12) |
表4 辅助设备数学模型
Table 4 Mathematical model of auxiliary equipment
设备 | 数学模型 | |
---|---|---|
压缩机 | (10) | |
缓冲罐 | (11) | |
线性阀门 | (12) |
指标 | 数学模型 | |
---|---|---|
纯度 | (13) | |
回收率 | (14) | |
生产量 | (15) |
表5 工艺性能评价指标
Table 5 Process performance indicator
指标 | 数学模型 | |
---|---|---|
纯度 | (13) | |
回收率 | (14) | |
生产量 | (15) |
物性参数 | 活性炭 | 5A分子筛 |
---|---|---|
522.0 | 698.0 | |
Cps/(kJ·kg-1·K-1) | 1.047 | 0.92 |
rp/m | 0.00115 | 0.00157 |
0.433 | 0.357 | |
0.61 | 0.65 | |
0.9 | 1.0 | |
0.195 | 0.147 | |
kLDF,CO/s-1 | 0.15 | 0.063 |
0.0355 | 0.0135 | |
0.7 | 0.7 |
表6 活性炭和5A分子筛吸附剂参数
Table 6 Parameter of activate carbon and 5A zeolite adsorbent
物性参数 | 活性炭 | 5A分子筛 |
---|---|---|
522.0 | 698.0 | |
Cps/(kJ·kg-1·K-1) | 1.047 | 0.92 |
rp/m | 0.00115 | 0.00157 |
0.433 | 0.357 | |
0.61 | 0.65 | |
0.9 | 1.0 | |
0.195 | 0.147 | |
kLDF,CO/s-1 | 0.15 | 0.063 |
0.0355 | 0.0135 | |
0.7 | 0.7 |
参数 | 数值 |
---|---|
Hb/m | 1.0 |
Wt/m | 0.002 |
Db/m | 0.2 |
7800 | |
Cpw/(kJ·kg-1·K-1) | 0.5024 |
hw/(W·m-2·K-1) | 94.0 |
Tamb/K | 298.15 |
表7 吸附床参数
Table 7 Parameters of adsorption bed
参数 | 数值 |
---|---|
Hb/m | 1.0 |
Wt/m | 0.002 |
Db/m | 0.2 |
7800 | |
Cpw/(kJ·kg-1·K-1) | 0.5024 |
hw/(W·m-2·K-1) | 94.0 |
Tamb/K | 298.15 |
参数 | 活性炭 | 5A分子筛 | ||||||
---|---|---|---|---|---|---|---|---|
CH4 | CO | CO2 | H2 | CH4 | CO | CO2 | H2 | |
IP1/(mol·kg-1·bar-1) | 0.02386 | 0.03385 | 0.02880 | 0.01694 | 0.005833 | 0.01185 | 0.01003 | 0.004314 |
IP2/K | 5.62×10-5 | 9.07×10-5 | 7.00×10-5 | 2.10×10-5 | 1.19×10-5 | 3.13×10-5 | 1.86×10-5 | 1.06×10-5 |
IP3/bar-1 | 3.48×10-3 | 2.31×10-4 | 0.0100 | 6.25×10-5 | 6.05×10-4 | 0.02020 | 1.5781 | 0.002515 |
IP4/K | 1159 | 1751 | 1030 | 1229 | 1731 | 763.0 | 207.0 | 458.0 |
R | 0.9998 | 0.9999 | 0.9998 | 1.0000 | 0.9917 | 0.9988 | 0.9919 | 0.9984 |
ΔH/(kJ·mol-1) | -22.70 | -22.58 | -29.08 | -12.84 | -20.64 | -29.77 | -35.97 | -9.23 |
表8 扩展型Langmuir吸附模型拟合参数
Table 8 Extended Langmuir adsorption model fitting parameters
参数 | 活性炭 | 5A分子筛 | ||||||
---|---|---|---|---|---|---|---|---|
CH4 | CO | CO2 | H2 | CH4 | CO | CO2 | H2 | |
IP1/(mol·kg-1·bar-1) | 0.02386 | 0.03385 | 0.02880 | 0.01694 | 0.005833 | 0.01185 | 0.01003 | 0.004314 |
IP2/K | 5.62×10-5 | 9.07×10-5 | 7.00×10-5 | 2.10×10-5 | 1.19×10-5 | 3.13×10-5 | 1.86×10-5 | 1.06×10-5 |
IP3/bar-1 | 3.48×10-3 | 2.31×10-4 | 0.0100 | 6.25×10-5 | 6.05×10-4 | 0.02020 | 1.5781 | 0.002515 |
IP4/K | 1159 | 1751 | 1030 | 1229 | 1731 | 763.0 | 207.0 | 458.0 |
R | 0.9998 | 0.9999 | 0.9998 | 1.0000 | 0.9917 | 0.9988 | 0.9919 | 0.9984 |
ΔH/(kJ·mol-1) | -22.70 | -22.58 | -29.08 | -12.84 | -20.64 | -29.77 | -35.97 | -9.23 |
1 | 陈思晗, 张珂, 常丽萍, 等. 传统和新型制氢方法概述[J]. 天然气化工(C1化学与化工), 2019, 44(2): 122-127. |
Chen S H, Zhang K, Chang L P, et al. Overview of traditional and new hydrogen production methods[J]. Natural Gas Chemical Industry, 2019, 44(2): 122-127. | |
2 | 朱晓宇, 刘则渊. 国际氢能研究的文献计量学分析[J]. 情报杂志, 2011, 30(6): 65-69. |
Zhu X Y, Liu Z Y. Biliometrics analysis of international research on hydrogen energy[J]. Journal of Intelligence, 2011, 30(6): 65-69. | |
3 | Delgado J A, Águeda V I, Uguina M A, et al. Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15414-15426. |
4 | Sircar S, Golden T C. Purification of hydrogen by pressure swing adsorption[J]. Fuel & Energy Abstracts, 2000, 35(5): 667-687. |
5 | 何东荣, 周向辉, 张东辉. 利用ASPEN-ADSIM模拟变压吸附分离过程[J]. 天然气化工(C1化学与化工), 2009, 34(3): 11-15. |
He D R, Zhou X H, Zhang D H. Simulation of PSA separation process by ASPEN-ADSIM[J]. Natural Gas Chemical Industry, 2009, 34(3): 11-15. | |
6 | 冯孝庭. 吸附分离技术[M]. 北京: 化学工业出版社, 2000: 32-39. |
Feng X T. Adsorption Separation Technology[M]. Beijing: Chemical Industry Press, 2000: 32-39. | |
7 | Sircar S, Waldron W E, Rao M B, et al. Hydrogen production by hybrid SMR-PSA-SSF membrane system[J]. Separation and Purification Technology, 1999, 17(1): 11-20. |
8 | Lopes F V S, Grande C A, Alírio E R. Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breakthrough curves and PSA performance[J]. Chemical Engineering Science, 2011, 66(3): 303-317. |
9 | Golmakani A, Nabavi S A, Vasilije M. Effect of impurities on ultra-pure hydrogen production by pressure vacuum swing adsorption[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 278-289. |
10 | Golmakani A, Fatemi S, Tamnanloo J. Investigating PSA, VSA, and TSA methods in SMR unit of refineries for hydrogen production with fuel cell specification[J]. Separation and Purification Technology, 2017, 176: 73-91. |
11 | Shi W R, Yang H W, Shen Y H, et al. Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19057-19074. |
12 | 田涛, 刘冰, 石梅生, 等. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978. |
Tian T, Liu B, Shi M S, et al. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds[J]. CIESC Journal, 2019, 70(3): 969-978. | |
13 | Chai S W, Kothare M V, Sircar S. Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator[J]. Adsorption-Journal of the International Adsorption Society, 2012, 18(2): 87-102. |
14 | Rao V R, Kothare M V, Sircar S. Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept[J]. AIChE Journal, 2014, 60(9): 3330-3335. |
15 | Vemula R R, Kothare M V, Sircar S. Anatomy of a rapid pressure swing adsorption process performance[J]. AIChE Journal, 2015, 61(6): 2008-2015. |
16 | 刘应书, 祝显强, 杨雄, 等. 快速真空变压吸附制氧实验研究[J]. 医用气体工程, 2016, 1(1): 21-24. |
Liu Y S, Zhu X Q, Yang X, et al. An experimental study of rapid vacuum pressure swing adsorption for producing oxygen[J]. Medical Gases Engineering, 2016, 1(1): 21-24. | |
17 | 祝显强, 刘应书, 杨雄, 等. 中间气两步充压对快速真空变压吸附制氧的影响[J]. 化工学报, 2016, 67(10): 4264-4272. |
Zhu X Q, Liu Y S, Yang X, et al. Effect of two-step pressurization with intermediate gas on rapid vacuum pressure swing adsorption process for oxygen generation[J]. CIESC Journal, 2016, 67(10): 4264-4272. | |
18 | Vemula R R, Kothare M V, Sircar S. Performance of a medical oxygen concentrator using rapid pressure swing adsorption process: effect of feed air pressure[J]. AIChE Journal, 2016, 62(4): 1212-1215. |
19 | Wu C W, Vemula R R, Kothare M V, et al. Experimental study of a novel rapid pressure swing adsorption (RPSA) based medical oxygen concentrator (MOC): effect of adsorbent selectivity of N2 over O2[J]. Industrial & Engineering Chemistry Research, 2016, 55(16): 4676-4681. |
20 | Chai S W, Kothare M V, Sircar S. Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator[J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8703-8710. |
21 | Urich M D, Rama R V, Kothare M V. Multivariable model predictive control of a novel rapid pressure swing adsorption system[J]. AIChE Journal, 2018, 64(4): 1234-1245. |
22 | Vemula R R, Sircar S. Comments on the reliability of model simulation of a rapid pressure swing adsorption process for high-purity product[J]. Industrial & Engineering Chemistry Research, 2017, 56(31): 8991-8994. |
23 | Lopes F V S, Grande C A, Alírio E R. Fast-cycling VPSA for hydrogen purification[J]. Fuel, 2012, 93(1): 510-523. |
24 | Sharma I, Friedrich D, Golden T C, et al. Monolithic adsorbent-based rapid-cycle vacuum pressure swing adsorption process for carbon capture from small-scale steam methane reforming[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 7109-7120. |
25 | Yang H W, Yin C B, Jiang B, et al. Optimization and analysis of a VPSA process for N2/CH4 separation[J]. Separation and Purification Technology, 2014, 134(1): 232-240. |
26 | Sun W N, Shen Y H, Zhang D H, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7489-7501. |
27 | Ding Z Y, Han Z Y, Fu Q, et al. Optimization and analysis of the VPSA process for industrial-scale oxygen production[J]. Adsorption-Journal of the International Adsorption Society, 2018, 24(5): 499-516. |
28 | Wang Y Y, An Y X, Ding Z Y, et al. Integrated VPSA processes for air separation based on dual reflux configuration[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6562-6575. |
29 | Wu T B, Shen Y H, Feng L, et al. Adsorption properties of N2O on zeolite 5A, 13X, activated carbon, ZSM-5, and silica gel[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3473-3482. |
30 | Chen S R, Shen Y H, Guan Z B, et al. Adsorption properties of SF6 on zeolite NaY, 13X, activated carbon, and silica gel[J]. Journal of Chemical & Engineering Data, 2020, 65(8): 4044-4051. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[10] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[14] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[15] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||