化工学报 ›› 2021, Vol. 72 ›› Issue (2): 669-680.DOI: 10.11949/0438-1157.20200690
收稿日期:
2020-06-02
修回日期:
2020-07-31
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
汪怀远
作者简介:
汪怀远(1977—),男,博士,教授,基金资助:
WANG Huaiyuan(),LIN Dan,ZHANG Xiguang,YUAN Sicheng
Received:
2020-06-02
Revised:
2020-07-31
Online:
2021-02-05
Published:
2021-02-05
Contact:
WANG Huaiyuan
摘要:
基于可持续发展和绿色环保的要求,以水替代有机挥发性溶剂的新型水性超疏水涂层逐渐成为研究热点,但是水性涂料的分散性及涂层的疏水稳定性、涂层性能等相关问题也随之而来。本文介绍了水性超疏水涂层制备方法的发展现状,针对水性超疏水涂层力学耐久性能差的问题提出可行性方案,例如制备内外一致的一体化复合结构,加强涂层内界面相互作用,交联作用或设计自修复水性超疏水涂层等。此外,还对水性超疏水涂层在油水分离、防结冰、自清洁等领域的进展进行阐述,并探讨了水性超疏水涂层的规模化制备、涂层力学性能的强化和耐久性研究将成为主要探索方向,只有夯实水性超疏水涂层的基础研究,工业应用才能突破。
中图分类号:
汪怀远, 林丹, 张曦光, 袁思成. 水性超疏水涂层的制备、调控与应用的研究进展[J]. 化工学报, 2021, 72(2): 669-680.
WANG Huaiyuan, LIN Dan, ZHANG Xiguang, YUAN Sicheng. Research progress on preparation, regulation and application of waterborne superhydrophobic coatings[J]. CIESC Journal, 2021, 72(2): 669-680.
图2 PDMS-in-water乳液的合成过程(a)及PDMS分散状态(b);PDMS水中乳液的光学照片(c)[34]
Fig.2 Synthesis process to the PDMS-in-water emulsion (a) and the PDMS dispersion state (b). Optical photograph of the PDMS-in-water emulsion (c)[34]
图4 在铝基板上一步电沉积负载抑制剂(苯并三唑)的介孔二氧化硅膜[46]
Fig.4 Inhibitor (benzotriazole)-loaded mesoporous silica film by one-step electrodeposition on aluminum substrate[46]
图5 水性树脂制备的超疏水表面在水中浸润或空气中干燥时的亲水基团翻转机理[52]
Fig.5 Scheme showing the overturn of the hydrophilic groups caused by water immersion or air drying on SH coatings fabricated by waterborne resins[52]
Materials | Regulating strategy | Test | Condition | Distance or cycle | Wettability after test |
---|---|---|---|---|---|
PTFE-ZnAc2-NaCl[ | integrated composite structure | liner friction | 2.7 kPa, 1500 meshes | 4.5m | WCA=145.1° |
micro/nanotextured PDMS[ | rotary friction | 20 kPa, 240 meshes | 50 m | WCA=161° | |
silicone-acrylic[ | improve coating interface | liner friction | 100 g, 600 meshes | 6 m | WCA>150° |
water-based acrylate copolymer/silica[ | liner friction | 200 g, 2000 meshes | 300 cycles | WCA=157° | |
WPU/F-SiO2[ | rotary friction | 250 g, CS 10 wheels | 250 cycles | WCA=159.2° | |
PDMS-PES[ | washing | — | 4 cycles | WCA=141° | |
AP-ZnO@PTFE[ | liner friction | 200 g, 1000 meshes | 5 m | WCA>150° | |
WFPU4[ | cross-linking interaction | liner friction | — | 25 m | WSA=7.6° |
SAC and silica sol[ | rotary friction | 250 g, CS 10 wheels | 300 cycles | WCA=151.3° | |
Zonyl321/FAS/PTFE[ | self-repairing | martindale method | 12 kPa | 2000 cycles | CA=148° |
pH-capsules[ | soak in NaCl(aq) | 10 kPa, 320 meshes | 7 cycles | WCA>150° | |
U-capsules[ | liner friction | 20 kPa, 1500 meshes | 10 cycles | WCA>150° |
表1 水性超疏水涂层力学性能的调控策略及相应力学耐久性能
Table 1 Control strategy of mechanical properties and its mechanical durability of waterborne superhydrophobic coatings
Materials | Regulating strategy | Test | Condition | Distance or cycle | Wettability after test |
---|---|---|---|---|---|
PTFE-ZnAc2-NaCl[ | integrated composite structure | liner friction | 2.7 kPa, 1500 meshes | 4.5m | WCA=145.1° |
micro/nanotextured PDMS[ | rotary friction | 20 kPa, 240 meshes | 50 m | WCA=161° | |
silicone-acrylic[ | improve coating interface | liner friction | 100 g, 600 meshes | 6 m | WCA>150° |
water-based acrylate copolymer/silica[ | liner friction | 200 g, 2000 meshes | 300 cycles | WCA=157° | |
WPU/F-SiO2[ | rotary friction | 250 g, CS 10 wheels | 250 cycles | WCA=159.2° | |
PDMS-PES[ | washing | — | 4 cycles | WCA=141° | |
AP-ZnO@PTFE[ | liner friction | 200 g, 1000 meshes | 5 m | WCA>150° | |
WFPU4[ | cross-linking interaction | liner friction | — | 25 m | WSA=7.6° |
SAC and silica sol[ | rotary friction | 250 g, CS 10 wheels | 300 cycles | WCA=151.3° | |
Zonyl321/FAS/PTFE[ | self-repairing | martindale method | 12 kPa | 2000 cycles | CA=148° |
pH-capsules[ | soak in NaCl(aq) | 10 kPa, 320 meshes | 7 cycles | WCA>150° | |
U-capsules[ | liner friction | 20 kPa, 1500 meshes | 10 cycles | WCA>150° |
1 | Pan S, Chen M, Wu L. Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry [J]. ACS Appl. Mater. Interfaces, 2020, 12(4): 5157-5165. |
2 | Ye H, Zhu L, Li W, et al. Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcohol-modified hydrophobic SiO2 nanoparticles [J]. ACS Appl. Mater. Interfaces, 2017, 9(1): 858-867. |
3 | Erbil H Y. Practical applications of superhydrophobic materials and coatings: problems and perspectives[J]. Langmuir, 2020, 36(10): 2493-2509. |
4 | Parvate S, Dixit P, Chattopadhyay S. Superhydrophobic surfaces: insights from theory and experiment[J]. J. Phys. Chem. B, 2020, 124(8): 1323-1360. |
5 | 陈立, 周才龙, 杜京城, 等. 超疏水多孔材料的研究进展[J]. 化工学报, 2020, 71(10): 4502-4519. |
Chen L, Zhou C L, Du J C, et al. Progress of superhydrophobic porous materials[J]. CIESC Journal, 2020, 71(10): 4502-4519. | |
6 | 梁婷, 范振忠, 刘庆旺, 等. 超疏水/超双疏表面自修复方式的研究进展[J]. 化工进展, 2019, 38(7): 3185-3193. |
Liang T, Fan Z Z, Liu Q W, et al. Research progress on the self-healing on superhydrophobic/ superamphiphobic surface [J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3185-3193. | |
7 | Li J, Li D, Yang Y, et al. A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation[J]. Green Chemistry, 2016, 18(2): 541-549. |
8 | Li Y, Li B, Zhao X, et al. Totally waterborne, nonfluorinated, mechanically robust, and self-healing superhydrophobic coatings for actual anti-icing[J]. ACS Appl. Mater. Interfaces, 2018, 10(45): 39391-39399. |
9 | Zhang Y, Yao D, Wang S, et al. Large-scale fabrication of waterborne superamphiphobic coatings for flexible applications[J]. RSC Advances, 2018, 8(63): 36375-36382. |
10 | 王凯, 王德武, 侯得印, 等. 自组装法制备PVDF-SiO2/PVSQ超疏水复合膜及膜蒸馏抗污染性能 [J]. 化工学报, 2019, 70(1): 298-308. |
Wang K, Wang D W, Hou D Y, et al. Fabrication of PVDF-SiO2/PVSQ superhydrophobic compositemembrane via self-assembly with anti-fouling property for membrane distillation [J]. CIESC Journal, 2019, 70(1): 298-308. | |
11 | 周威, 陈立, 杜京城, 等. 仿生雾水收集材料:从基础研究到性能提升策略[J]. 化工学报, 2020, 71(10): 4532-4552. |
Zhou W, Chen L, Du J C, et al. Bio-inspired fog harvesting materials: from fundamental research to promotional strategy [J]. CIESC Journal, 2020, 71(10): 4532-4552. | |
12 | Li X, Zhao S, Hu W, et al. Robust superhydrophobic surface with excellent adhesive properties based on benzoxazine/epoxy/mesoporous SiO2 [J]. Applied Surface Science, 2019, 481: 374-378. |
13 | Yu T, Halouane F, Mathias D, et al. Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: separation of oil/water mixture and demulsification[J]. Chemical Engineering Journal, 2020, 384: 123339-123347. |
14 | Zhong X, Zhou M, Wang S, et al. Preparation of water-borne non-fluorinated anti-smudge surfaces and their applications [J]. Progress in Organic Coatings, 2020, 142: 105581-105591. |
15 | Zhao J, Wang X, Xu Y, et al. Multifunctional, waterproof, and breathable nanofibrous textiles based on fluorine-free, all-water-based coatings [J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15911-15918. |
16 | Zhou H, Wang H, Niu H, et al. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces [J]. Advanced Functional Materials, 2017, 27(14): 1604261-1604268. |
17 | Grozea C M, Huang S, Liu G. Water-based, heat-assisted preparation of water-repellent cotton fabrics using graft copolymers [J]. RSC Advances, 2016, 6(24): 20135-20144. |
18 | Cai R, Glinel K, De Smet D, et al. Environmentally friendly super-water-repellent fabrics prepared from water-based suspensions [J]. ACS Appl. Mater. Interfaces, 2018, 10(18): 15346-15351. |
19 | 单文雯. 纳米材料改性水性防腐涂料的研究进展[J]. 广州化工, 2019, 47(14): 17-19. |
Shan W W. Research progress on waterborne anticorrosive coatings modified by nanomaterials [J]. Guangzhou Chemical Industry, 2019, 47(14): 17-19. | |
20 | Milionis A, Dang K, Prato M, et al. Liquid repellent nanocomposites obtained from one-step water-based spray [J]. Journal of Materials Chemistry A, 2015, 3(24): 12880-12889. |
21 | 杜晨光, 夏帆, 王树涛, 等 仿生智能浸润性表面研究的新进展[J]. 高等学校化学学报, 2010, 31(3): 421-431. |
Du C G, Xia F, Wang S T, et al. Advances in bio-inspired smart surfaces with special wettability[J]. Chemical Journal of Chinese Universities, 2010, 31(3): 421-431. | |
22 | Hou L, Wang N, Wu J, et al. Bioinspired superwettability electrospun micro/nanofibers and their applications [J]. Advanced Functional Materials, 2018, 28: 1801114-1801135. |
23 | 王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料[J]. 物理学报, 2016, 65(18): 61-83. |
Wang P W, Liu M J, Jiang L. Bioinspired multiscale interfacial materials with superwettability[J]. Acta Physica Sinica, 2016, 65(18): 61-83. | |
24 | 向静, 王宏, 朱恂, 等. 荷叶表面的复刻及微纳结构对疏水性能的影响[J]. 化工学报, 2019, 70(9): 3545-3552. |
Xiang J, Wang H, Zhu X, et al. Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties [J]. CIESC Journal, 2019, 70(9): 3545-3552. | |
25 | Mates J E, Schutzius T M, Bayer I S, et al. Water-based superhydrophobic coatings for nonwoven and cellulosic substrates [J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 222-227. |
26 | Morrissette J M, Carroll P J, Bayer I S, et al. A methodology to produce eco-friendly superhydrophobic coatings produced from all-water-processed plant-based filler materials [J]. Green Chemistry, 2018, 20(22): 5169-5178. |
27 | Lozhechnikova A, Bellanger H, Michen B, et al. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood [J]. Applied Surface Science, 2017, 396: 1273-1281. |
28 | Schutzius T M, Bayer I S, Qin J, et al. Water-based, nonfluorinated dispersions for environmentally benign, large-area, superhydrophobic coatings [J]. ACS Appl. Mater. Interfaces, 2013, 5(24): 13419-13425. |
29 | Telford A M, Easton C D, Hawkett B S, et al. Waterborne, all-polymeric, colloidal‘raspberry’particles with controllable hydrophobicity and water droplet adhesion properties [J]. Thin Solid Films, 2016, 603: 69-74. |
30 | Liu M, Hou Y, Li J, et al. Robust and self-repairing superamphiphobic coating from all-water-based spray [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 645-651. |
31 | Wang T, Bao Y, Gao Z, et al. Synthesis of mesoporous silica-shell/oil-core microspheres for common waterborne polymer coatings with robust superhydrophobicity [J]. Progress in Organic Coatings, 2019, 132: 275-282. |
32 | Huang S, Liu G, Zhang K, et al. Water-based polyurethane formulations for robust superhydrophobic fabrics [J]. Chemical Engineering Journal, 2019, 360: 445-451. |
33 | Zhao D, Pan M, Yuan J, et al. A waterborne coating for robust superamphiphobic surfaces [J]. Progress in Organic Coatings, 2020, 138: 105368-105375. |
34 | Ge M, Cao C, Liang F, et al. A “PDMS-in-water” emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature [J]. Nanoscale Horizons, 2020, 5(1): 65-73. |
35 | Meyer M F, McConnell R L, Joyner F B. Water-dispersible polyolefin compositions useful as hot melt adhesives: US 3919176[P]. 1975-11-11. |
36 | Liu M, Li J, Hou Y, et al. Inorganic adhesives for robust superwetting surfaces [J]. ACS Nano, 2017, 11(1): 1113-1119. |
37 | Mates J E, Ibrahim R, Vera A, et al. Environmentally-safe and transparent superhydrophobic coatings [J]. Green Chemistry, 2016, 18(7): 2185-2192. |
38 | Zheng S, Bellido-Aguilar D A, Huang Y, et al. Mechanically robust hydrophobic bio-based epoxy coatings for anti-corrosion application [J]. Surface and Coatings Technology, 2019, 363: 43-50. |
39 | Zheng S, Bellido-Aguilar D A, Wu X, et al. Durable waterborne hydrophobic bio-epoxy coating with improved anti-icing and self-cleaning performance [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 641-649. |
40 | Lu L, Hu C, Zhu Y, et al. Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal-organic framework [J]. Cellulose, 2018, 25(7): 4223-4238. |
41 | Li M, Bian C, Yang G, et al. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion [J]. Chemical Engineering Journal, 2019, 368: 350-358. |
42 | Wang H, Zhou H, Liu S, et al. Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings [J]. RSC Advances, 2017, 7(54): 33986-33993. |
43 | Razavi S M R, Masoomi M, Bagheri R. Facile strategy toward developing a scalable, environmental friendly and self-cleaning superhydrophobic surface [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 541: 108-116. |
44 | 刘雷, 张粤, 李霞, 等. 铝合金表面耐久性超疏水防护膜的制备与表征 [J]. 化工学报, 2020, 71(10): 4750-4759. |
Liu L, Zhang Y, Li X, et al. Preparation and characterization of durable superhydrophobic protective coatings on aluminum alloy [J]. CIESC Journal, 2020, 71(10): 4750-4759. | |
45 | Choi D, Yoo J, Park S M, et al. Facile and cost-effective fabrication of patternable superhydrophobic surfaces via salt dissolution assisted etching [J]. Applied Surface Science, 2017, 393:449-456. |
46 | Zhao Y, Xu J B, Zhan J, et al. Electrodeposited superhydrophobic mesoporous silica films co-embedded with template and corrosion inhibitor for active corrosion protection [J]. Applied Surface Science, 2020, 508: 145242-145243. |
47 | Wang H, Hu Z, Zhu Y, et al. Toward easily enlarged superhydrophobic materials with stain-resistant, oil-water separation and anticorrosion function by a water-based one-step electrodeposition method [J]. Industrial & Engineering Chemistry Research, 2017, 56(4): 933-941. |
48 | Wang M, Zhang Z, Li Y, et al. An eco-friendly one-step method to fabricate superhydrophobic nanoparticles with hierarchical architectures [J]. Chemical Engineering Journal, 2017, 327: 530-538. |
49 | Wang M, Zhang Z, Li Y, et al. Multifunctional superamphiphobic fabric with hierarchical structures via a mild water-based strategy [J]. Applied Surface Science, 2019, 470: 687-694. |
50 | Liu Z H, Pang X Q, Wang K T, et al. Superhydrophobic coatings prepared by the in situ growth of silicone nanofilaments on alkali-activated geopolymers surface [J]. ACS Appl. Mater. Interfaces, 2019, 11(25): 22809-22816. |
51 | Ghosh N, Singh A V, Vaidya A A. Water-based layer-by-layer surface chemical modification of biomimetic materials: oil repellency [J]. ACS Appl. Mater. Interfaces, 2013, 5(18): 8869-8874. |
52 | Zhang J, Zhang W, Lu J, et al. Aqueous epoxy-based superhydrophobic coatings: fabrication and stability in water [J]. Progress in Organic Coatings, 2018, 121: 201-208. |
53 | Zhu C, Lin W, Chen L, et al. Deep color, heat-reflective, superhydrophobic and anti-soiling coatings with waterborne silicone emulsion [J]. Solar Energy Materials and Solar Cells, 2019, 199: 129-135. |
54 | Baidya A, Das S K, Ras R H A, et al. Fabrication of a waterborne durable superhydrophobic material functioning in air and under oil [J]. Advanced Materials Interfaces, 2018, 5(11): 1701523-1701531. |
55 | Tian X, Verho T, Ras R H A. Moving superhydrophobic surfaces toward real-world applications [J]. Science, 2016, 352(6282): 142-143. |
56 | Zhang Y Y, Ge Q, Yang L L, et al. Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores [J]. Applied Surface Science, 2015, 339: 151-157. |
57 | Davis A, Surdo S, Caputo G, et al. Environmentally benign production of stretchable and robust superhydrophobic silicone monoliths [J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 2907-2917. |
58 | Yang J, Liang H, Zeng L, et al. Facile fabrication of superhydrophobic nanocomposite coatings based on water-based emulsion latex [J]. Advanced Materials Interfaces, 2018, 5(15): 1800207-1800214. |
59 | Li M, Li Y, Xue F, et al. Water-based acrylate copolymer/silica hybrids for facile preparation of robust and durable superhydrophobic coatings [J]. Applied Surface Science, 2018, 447: 489-499. |
60 | Zheng H, Pan M, Wen J, et al. Robust, Transparent, and superhydrophobic coating fabricated with waterborne polyurethane and inorganic nanoparticle composites [J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8050-8060. |
61 | Liu M, Hou Y, Li J, et al. An all-water-based system for robust superhydrophobic surfaces [J]. J. Colloid Interface Sci., 2018, 519: 130-136. |
62 | Zhao B, Jia R. Preparation of super-hydrophobic films based on waterborne polyurethane and their hydrophobicity characteristics [J]. Progress in Organic Coatings, 2019, 135: 440-448. |
63 | Ye H, Zhu L, Li W. Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications [J]. Journal of Materials Chemistry A, 2017, 5: 9882-9890. |
64 | Chen K, Gu K, Qiang S, et al. Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings [J]. RSC Advances, 2017, 7(1): 543-550. |
65 | Chen K, Zhou S, Yang S, et al. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules [J]. Advanced Functional Materials, 2015, 25(7): 1035-1041. |
66 | Chang T, Panhwar F, Zhao G. Flourishing self-healing surface materials: recent progresses and challenges [J]. Advanced Materials Interfaces, 2020, 7(6): 1901959-1901995. |
67 | Fu S, Zhou H, Wang H, et al. Magnet-responsive, superhydrophobic fabrics from waterborne, fluoride-free coatings [J]. RSC Advances, 2018, 8(2): 717-723. |
68 | Niu L, Kang Z. Spray deposition process to fabricate Cu2O superhydrophobic surfaces on brass mesh for efficient oil-water separation [J]. Materials Letters, 2018, 210: 97-100. |
69 | Davis A, Yeong Y H, Steele A, et al. Superhydrophobic nanocomposite surface topography and ice adhesion [J]. ACS Appl. Mater. Interfaces, 2014, 6(12): 9272-9279. |
70 | 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用 [J]. 化学进展, 2017, 29(1): 102-118. |
Zheng H K, Chang S N, Zhao Y Y. Anti-icing & icephobic mechanism and applications of superhydrophobic / ultra slippery surface [J]. Progress in Chemistry, 2017, 29(1): 102-118. | |
71 | 李亚斌. 环境友好水性超疏水、超双疏涂层的制备及性能研究 [D]. 兰州: 兰州理工大学, 2019. |
Li Y B. Preparation and properties of environmentally friedly waterborne superhydrophobic and superamphiphobic coatings [D]. Lanzhou: Lanzhou University of Technology, 2019. | |
72 | Luo X, Hu W, Cao M, et al. An environmentally friendly approach for the fabrication of conductive superhydrophobic coatings with sandwich-like structures [J]. Polymers (Basel), 2018, 10(4): 378-389. |
73 | Aslanidou D, Karapanagiotis I, Lampakis D. Waterborne superhydrophobic and superoleophobic coatings for the protection of marble and sandstone [J]. Materials (Basel), 2018, 11(4): 1155-1164. |
74 | Aslanidou D, Karapanagiotis I, Panayiotou C. Superhydrophobic, superoleophobic coatings for the protection of silk textiles [J]. Progress in Organic Coatings, 2016, 97: 44-52. |
75 | Chatzigrigoriou A, Manoudis P N, Karapanagiotis I. Fabrication of water repellent coatings using waterborne resins for the protection of the cultural heritage [J]. Macromolecular Symposia, 2013, 331/332(1): 158-165. |
76 | Baidya A, Ganayee M A, Jakka Ravindran S, et al. Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks [J]. ACS Nano, 2017, 11(11): 11091-11099. |
77 | Liu M, Mao T, Zhang Y, et al. General water-based strategy for the preparation of superhydrophobic coatings on smooth substrates [J]. Industrial & Engineering Chemistry Research, 2017, 56(46): 13783-13790. |
78 | Chen K, Zhou J, Che X, et al. One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings [J]. J. Colloid Interface Sci., 2020, 566: 401-410. |
79 | Gou W, Che X, Yu X, et al. Facile fabrication of waterborne fabric coatings with multifunctional superhydrophobicity and thermal insulation [J]. Materials Letters, 2019, 250: 123-126. |
80 | Naderizadeh S, Heredia-Guerrero J A, Caputo G, et al. Superhydrophobic coatings from beeswax-in-water emulsions with latent heat storage capability [J]. Advanced Materials Interfaces, 2019, 6(5): 1801782-1801792. |
81 | Zhang J, Lin W, Zhu C, et al. Dark, infrared reflective, and superhydrophobic coatings by waterborne resins [J]. Langmuir, 2018, 34(19): 5600-5605. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[7] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[8] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[9] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[10] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[11] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[12] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[13] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[14] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[15] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1033
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1277
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||