化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1400-1408.DOI: 10.11949/0438-1157.20200722
陆至彬1(),谢星2,鲁思达2,何畅3,4(),张冰剑3,4,陈清林3,4
收稿日期:
2020-06-08
修回日期:
2020-09-01
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
何畅
作者简介:
陆至彬(1998—),男,硕士研究生,基金资助:
LU Zhibin1(),XIE Xing2,LU Sida2,HE Chang3,4(),ZHANG Bingjian3,4,CHEN Qinglin3,4
Received:
2020-06-08
Revised:
2020-09-01
Online:
2021-03-05
Published:
2021-03-05
Contact:
HE Chang
摘要:
基于道南细孔-介电DSPM-DE模型,开展了工业含盐废水多级纳滤分离系统的代理模型构建与优化研究。首先,利用高维模型表征的数学建模方法,构建与原有纳滤理论模型有高拟合度的高精度代理模型。基于此代理模型,进一步构建膜法分盐工艺中的多级纳滤分离的数学优化模型,并以分离单位质量NaCl的比能耗为优化目标,讨论在给定设计参数的条件下进料液中[Cl-]/[
中图分类号:
陆至彬, 谢星, 鲁思达, 何畅, 张冰剑, 陈清林. 基于代理模型的含盐废水多级纳滤系统的过程优化设计[J]. 化工学报, 2021, 72(3): 1400-1408.
LU Zhibin, XIE Xing, LU Sida, HE Chang, ZHANG Bingjian, CHEN Qinglin. Surrogate model-based optimal design of multi-stage nanofiltration separation system for saline wastewater[J]. CIESC Journal, 2021, 72(3): 1400-1408.
Parameter | Unit | Value | Ref. | |
---|---|---|---|---|
NF270 properties | Sm | m2 | 37.16 | [ |
rpore | nm | 0.43 | [ | |
?xe | μm | 1.5 | ||
εpore | — | 42.4 | [ | |
Xd | mol/m3 | fitting | [ | |
Other parameters | temperature, T | K | 298 | |
Di,∞ ( | m2/s | 1.065/2.031/1.344 | [ | |
ri ( | nm | 0.231/0.121/0.184 | [ | |
εb | — | 80.4 | [ |
表1 纳滤传质模拟模型的关键参数
Table 1 Key parameters of the mass transfer model for nanofiltration
Parameter | Unit | Value | Ref. | |
---|---|---|---|---|
NF270 properties | Sm | m2 | 37.16 | [ |
rpore | nm | 0.43 | [ | |
?xe | μm | 1.5 | ||
εpore | — | 42.4 | [ | |
Xd | mol/m3 | fitting | [ | |
Other parameters | temperature, T | K | 298 | |
Di,∞ ( | m2/s | 1.065/2.031/1.344 | [ | |
ri ( | nm | 0.231/0.121/0.184 | [ | |
εb | — | 80.4 | [ |
Parameter | Unit | Value | Ref. |
---|---|---|---|
minimum element pressure drop, ?Pdrop | bar | 0.05 | |
maximum element water recovery, re | — | 15% | ROSA |
maximum applied pressure per element, ?Pe | bar | 41 | [ |
maximum element feed flow rate, | m3/h | 13.85 | ROSA |
number of elements in each pressure vessel, Ne | — | 4 | |
fluid viscosity, μ | Pa?s | 0.936×10-3 | Aspen Plus |
high pressure pump efficiency, ηhp | — | 0.75 | [ |
booster pump efficiency, ηbp | — | 0.57 | [ |
circulating pump efficiency, ηcp | — | 0.8 | [ |
energy recovery device efficiency, ηERD | — | 0.9 | [ |
total feed rate of waste water, Qf | m3/h | 400 | |
pipeline fluid pressure, P1 | bar | 2.0 | [ |
表2 优化模型的关键参数和约束条件
Table 2 Key parameters and constraints used in optimization process
Parameter | Unit | Value | Ref. |
---|---|---|---|
minimum element pressure drop, ?Pdrop | bar | 0.05 | |
maximum element water recovery, re | — | 15% | ROSA |
maximum applied pressure per element, ?Pe | bar | 41 | [ |
maximum element feed flow rate, | m3/h | 13.85 | ROSA |
number of elements in each pressure vessel, Ne | — | 4 | |
fluid viscosity, μ | Pa?s | 0.936×10-3 | Aspen Plus |
high pressure pump efficiency, ηhp | — | 0.75 | [ |
booster pump efficiency, ηbp | — | 0.57 | [ |
circulating pump efficiency, ηcp | — | 0.8 | [ |
energy recovery device efficiency, ηERD | — | 0.9 | [ |
total feed rate of waste water, Qf | m3/h | 400 | |
pipeline fluid pressure, P1 | bar | 2.0 | [ |
图3 不同水通量下对应的DSPM-DE模型模拟值与实验值的比较(进料浓度:SO42- 80 mol/m3,Cl- 180 mol/m3)
Fig.3 Comparison of simulation data by DSPM-DE model and experiment data under various water fluxes (feed concentration: SO42- 80 mol/m3, Cl- 180 mol/m3)
θ=1 | θ=2 | |
---|---|---|
α=1 | -0.014436 | 0.022249 |
α=1 | -0.011062 | 0.002860 |
α=3 | — | — |
α=4 | -0.012763 | 0.003062 |
表3 透过液SO42-浓度代理模型一阶系数
Table 3 First order coefficients of surrogate model for SO42- concentration in permeate
θ=1 | θ=2 | |
---|---|---|
α=1 | -0.014436 | 0.022249 |
α=1 | -0.011062 | 0.002860 |
α=3 | — | — |
α=4 | -0.012763 | 0.003062 |
θ=1, ω=1 | θ=1, ω=2 | θ=2, ω=1 | θ=2, ω=2 | |
---|---|---|---|---|
α=1, β=2 | 0.027319 | -0.000168 | -0.000341 | 0.000047 |
α=1, β=3 | — | — | -0.002461 | 0.000884 |
α=1, β=4 | 0.011366 | -0.002616 | -0.004330 | 0.000888 |
α=2, β=3 | — | — | -0.000704 | 0.000175 |
α=2, β=4 | 0.008873 | -0.002153 | 0.006755 | -0.001389 |
α=3, β=4 | — | — | -0.033619 | 0.007160 |
表4 透过液SO42-浓度代理模型二阶系数
Table 4 Second order coefficients of surrogate model for SO42- concentration in permeate
θ=1, ω=1 | θ=1, ω=2 | θ=2, ω=1 | θ=2, ω=2 | |
---|---|---|---|---|
α=1, β=2 | 0.027319 | -0.000168 | -0.000341 | 0.000047 |
α=1, β=3 | — | — | -0.002461 | 0.000884 |
α=1, β=4 | 0.011366 | -0.002616 | -0.004330 | 0.000888 |
α=2, β=3 | — | — | -0.000704 | 0.000175 |
α=2, β=4 | 0.008873 | -0.002153 | 0.006755 | -0.001389 |
α=3, β=4 | — | — | -0.033619 | 0.007160 |
θ=1 | θ=2 | |
---|---|---|
α=1 | 21.073186 | -3.237781 |
α=2 | 82.290331 | 7.929830 |
α=3 | — | — |
α=4 | -11.560941 | 2.654041 |
表5 透过液Cl-浓度代理模型一阶系数
Table 5 First order coefficients of surrogate model for Cl- concentration in permeate
θ=1 | θ=2 | |
---|---|---|
α=1 | 21.073186 | -3.237781 |
α=2 | 82.290331 | 7.929830 |
α=3 | — | — |
α=4 | -11.560941 | 2.654041 |
θ=1, ω=1 | θ=1, ω=2 | θ=2, ω=1 | θ=2, ω=2 | |
---|---|---|---|---|
α=1, β=2 | 9.617871 | 0.110605 | 0.163656 | -0.031836 |
α=1, β=3 | — | — | 1.071423 | -0.169995 |
α=1, β=4 | -9.937840 | 1.888694 | 2.622338 | -0.449131 |
α=2, β=3 | — | — | -2.578999 | 0.374763 |
α=2, β=4 | -45.992975 | 8.506330 | 4.323250 | -1.123688 |
α=3, β=4 | — | — | -9.240002 | 1.694438 |
表6 透过液Cl-浓度代理模型二阶系数
Table 6 Second order coefficients of surrogate model for Cl- concentration in permeate
θ=1, ω=1 | θ=1, ω=2 | θ=2, ω=1 | θ=2, ω=2 | |
---|---|---|---|---|
α=1, β=2 | 9.617871 | 0.110605 | 0.163656 | -0.031836 |
α=1, β=3 | — | — | 1.071423 | -0.169995 |
α=1, β=4 | -9.937840 | 1.888694 | 2.622338 | -0.449131 |
α=2, β=3 | — | — | -2.578999 | 0.374763 |
α=2, β=4 | -45.992975 | 8.506330 | 4.323250 | -1.123688 |
α=3, β=4 | — | — | -9.240002 | 1.694438 |
图6 不同级数下各级单元的最优操作压力随[Cl-]/[SO42-]变化曲线
Fig.6 The optimal unit operating pressures in different stage with varied [Cl-]/[SO42-] (s1, s2, s3 represent the first, second and third unit of system)
24 | Wang S H, Kang L W, Zhang B J, et al. Energy minimization in hybrid desalination system of reverse osmosis and pressure retarded osmosis[J]. CIESC Journal, 2019, 70(2): 617-624. |
25 | Wang S H, Zhu Q P, He C, et al. Model-based optimization and comparative analysis of open-loop and closed-loop RO-PRO desalination systems[J]. Desalination, 2018, 446: 83-93. |
26 | DuPont de Nemours, Inc. DOW FilmTec™ NF270-400/34i[EB/OL]. [2020-03-30]. . |
27 | Oatley D L, Llenas L, Pérez R, et al. Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation[J]. Advances in Colloid and Interface Science, 2012, 173: 1-11. |
28 | Déon S, Dutournié P, Limousy L, et al. Transport of salt mixtures through nanofiltration membranes: numerical identification of electric and dielectric contributions[J]. Separation and Purification Technology, 2009, 69(3): 225-233. |
29 | Oatley D L, Llenas L, Aljohani N H M, et al. Investigation of the dielectric properties of nanofiltration membranes[J]. Desalination, 2013, 315: 100-106. |
30 | Escoda A, Déon S, Fievet P. Assessment of dielectric contribution in the modeling of multi-ionic transport through nanofiltration membranes[J]. Journal of Membrane Science, 2011, 378(1/2): 214-223. |
31 | Li K, Ma W C, Han H J, et al. Selective recovery of salt from coal gasification brine by nanofiltration membranes[J]. Journal of Environmental Management, 2018, 223: 306-313. |
32 | Kim J E, Phuntsho S, Chekli L, et al. Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water[J]. Desalination, 2018, 429: 96-104. |
33 | DuPont de Nemours, Inc. What is the MWCO of FilmTec™ NF90 and NF270 reverse osmosis elements[EB/OL]. [2020-03-30]. . |
1 | Huang L, Wang D, He C L, et al. Industrial wastewater desalination under uncertainty in coal-chemical eco-industrial parks[J]. Resources Conservation and Recycling, 2019, 145: 370-378. |
2 | Zhu Q P, Zhang B J, Chen Q L, et al. Optimal synthesis of water networks for addressing high-concentration wastewater in coal-based chemical plants[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10792-10805. |
3 | 刘晓鹏. 煤化工浓盐水蒸发结晶分离工业盐的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
Liu X P. Research on the experiment of separating industrial salt from coal chemical brine by evaporation and crystallization[D]. Harbin: Harbin Institute of Technology, 2017. | |
4 | 韩洪军, 李琨, 徐春艳, 等. 现代煤化工废水近零排放技术难点及展望[J]. 工业水处理, 2019, 39(8): 1-5. |
Han H, Li K, Xu C, et al. Status and prospects of near zero discharge technology for modern coal chemical industry wastewater[J]. Industrial Water Treatment, 2019, 39(8): 1-5. | |
5 | 熊日华, 何灿, 马瑞, 等. 高盐废水分盐结晶工艺及其技术经济分析[J]. 煤炭科学技术, 2018, 46(9): 37-43. |
Xiong R, He C, Ma R, et al. Process introduction and techno-economic analysis on pure salt recovery crystallization for high salinity wastewater[J]. Coal Science and Technology, 2018, 46(9): 37-43. | |
6 | Déon S, Dutournié P, Bourseau P. Modeling nanofiltration with Nernst-Planck approach and polarization layer[J]. AIChE Journal, 2007, 53(8): 1952-1969. |
7 | Déon S, Dutournié P, Limousy L, et al. The two-dimensional pore and polarization transport model to describe mixtures separation by nanofiltration: model validation[J]. AIChE Journal, 2011, 57(4): 985-995. |
8 | Ortiz-Albo P, Ibañez R, Urtiaga A, et al. Phenomenological prediction of desalination brines nanofiltration through the indirect determination of zeta potential[J]. Separation and Purification Technology, 2019, 210: 746-753. |
9 | Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. |
10 | Bowen W R, Welfoot J S. Modelling the performance of membrane nanofiltration—critical assessment and model development[J]. Chemical Engineering Science, 2002, 57(7): 1121-1137. |
11 | Geraldes V, Brites Alves A M. Computer program for simulation of mass transport in nanofiltration membranes[J]. Journal of Membrane Science, 2008, 321(2): 172-182. |
12 | Pérez-González A, Ibáñez R, Gómez P, et al. Nanofiltration separation of polyvalent and monovalent anions in desalination brines[J]. Journal of Membrane Science, 2015, 473: 16-27. |
13 | Roy Y, Sharqawy M H, Lienhard J H. Modeling of flat-sheet and spiral-wound nanofiltration configurations and its application in seawater nanofiltration[J]. Journal of Membrane Science, 2015, 493: 360-372. |
14 | Roy Y, Warsinger D M, Lienhard J H. Effect of temperature on ion transport in nanofiltration membranes: diffusion, convection and electromigration[J]. Desalination, 2017, 420: 241-257. |
15 | Roy Y, Lienhard J H V. Factors contributing to the change in permeate quality upon temperature variation in nanofiltration[J]. Desalination, 2019, 455: 58-70. |
16 | Labban O, Chong T H, Lienhard J H V. Design and modeling of novel low-pressure nanofiltration hollow fiber modules for water softening and desalination pretreatment[J]. Desalination, 2018, 439: 58-72. |
17 | Labban O, Liu C, Chong T H, et al. Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening[J]. Journal of Membrane Science, 2017, 521: 18-32. |
18 | Roy Y. Modeling nanofiltration for large scale desalination applications[D]. Cambridge, MA: Massachusetts Institute of Technology, 2015. |
19 | Bonner R, Germishuizen C, Franzsen S. Prediction of nanofiltration rejection performance in brackish water reverse osmosis brine treatment processes[J]. Journal of Water Process Engineering, 2019, 32: 100900. |
20 | Pan M, Sikorski J, Akroyd J, et al. Design technologies for eco-industrial parks: from unit operations to processes, plants and industrial networks[J]. Applied Energy, 2016, 175: 305-323. |
21 | DuPont de Nemours, Inc. FILMTEC™ reverse osmosis membranes technical manual[EB/OL]. [2020-03-30]. . |
22 | Karuppiah R, Bury S J, Vazquez A, et al. Optimal design of reverse osmosis-based water treatment systems[J]. AIChE Journal, 2012, 58(9): 2758-2769. |
23 | Ghobeity A, Mitsos A. Optimal time-dependent operation of seawater reverse osmosis[J]. Desalination, 2010, 263(1/2/3): 76-88. |
24 | 王沈晗, 康仑巍, 张冰剑, 等. 反渗透和压力延迟渗透耦合脱盐系统的能效优化研究[J]. 化工学报, 2019, 70(2): 617-624. |
[1] | 高润淼, 宋孟杰, 高恩元, 张龙, 张旋, 邵苛苛, 甄泽康, 江正勇. 冷链装备制冷剂相关温室气体减排研究进展[J]. 化工学报, 2023, 74(S1): 1-7. |
[2] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[3] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[4] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[11] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[12] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[13] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||