化工学报 ›› 2021, Vol. 72 ›› Issue (4): 1815-1824.DOI: 10.11949/0438-1157.20201127
收稿日期:
2020-08-10
修回日期:
2020-11-11
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
于丰收
作者简介:
于丰收(1987—),男,博士,副教授,基金资助:
Received:
2020-08-10
Revised:
2020-11-11
Online:
2021-04-05
Published:
2021-04-05
Contact:
YU Fengshou
摘要:
通过电催化方法,在常温、常压下将CO2还原为高附加值化学品,是解决目前能源短缺和环境污染问题的理想选择之一。铜基材料是目前被证实的还原CO2生成烃类、醇类等高附加值产物的最有效非均相电催化剂,因此受到国内外研究者的广泛关注。综述了纳米Cu材料在电催化还原CO2领域的研究进展,重点阐述催化剂结构(晶界、表面结构与晶面、孔结构等)与性能关系,并讨论了测试条件如传质、局部pH对催化性能的影响,最后论述了该领域目前存在的问题和未来发展趋势。
中图分类号:
于丰收, 张鲁华. Cu基纳米材料电催化还原CO2的结构-性能关系[J]. 化工学报, 2021, 72(4): 1815-1824.
YU Fengshou, ZHANG Luhua. Structure-performance relationship of Cu-based nanocatalyst for electrochemical CO2 reduction[J]. CIESC Journal, 2021, 72(4): 1815-1824.
图2 电化学还原法和氢还原法制备Cu纳米线的晶体取向图(a);Cu纳米线上不同种类晶界比例(b);混乱大角度晶界和JCO关系曲线(c);∑3晶界与JCO关系曲线(d)
Fig.2 Crystal orientation maps constructed for the various types of Cu nanowires (a); Distribution of the different types of grain boundaries (b); The correlations between JCO and the relative densities of high-angle grain (c) and coherent (Σ3) boundaries (d) for HR-150 nanowires
图3 不含晶界铜电极(ED-Cu) (a)和富含晶界铜电极(GB-Cu)(b)样品的HR-TEM图;样品的Cu 2p XPS表征(c); ED-Cu对不同产物的法拉第效率(d); GB-Cu对不同产物的法拉第效率(e);样品对C2产物的法拉第效率(f);GB-Cu原位ATR-SEIRAS表征(g);GB-Cu DFT计算模型(h)和不同吸附位上的*CO吸附能(i)
Fig.3 HRTEM images of ED-Cu catalysts (a) and GB-Cu catalysts (b); Cu 2p XPS spectra of as-prepared Cu catalysts (c); Faradaic efficiencies of gas products on ED-Cu (d) and GB-Cu (e) as a function of the electrode potential; Comparison of Faradaic efficiencies of C2 products on electrodes (f); In situ ATR-SEIRAS spectras of GB-Cu (g); Different binding sites on the schemed atomic structure of GB-Cu (h); *CO energies in different sites of the schemed structure of GB-Cu (i)
图4 100-cycle Cu的制备过程(a);polished Cu (b)和100-cycle Cu (c)的SEM图;100-cycle Cu的衍射图、高倍TEM图(d)和晶格间距图(e);100-cycle Cu 对C2+, C1 and H2产物的法拉第效率(f)和电流密度(g); Cu箔、10-cycle Cu、100-cycle Cu生成C2+/C1产物的最高比例(h)
Fig.4 Schematic diagram for the preparation of 100-cycle Cu(a); SEM images of the polished Cu foil(b) and 100-cycle Cu(c); SAED pattern and TEM image(d) of the Cu nanotube; The lattice spacing of Cu nanotubes(e); Faradaic efficiencies(f) and partial currents(g) of C2+, C1 and H2 on 100-cycle Cu; The highest C2+/C1 ratio of Cu foil, 10-cycle Cu, 100-cycle Cu(h)
图5 CO (左)、 C2 (中)和 C3 (右)物种在实心球(a)和空心球(b)内外浓度分布
Fig.5 CO (left), C2 (middle) and C3 (right) concentration distributions on the solid sphere (a) and cavity confinement structure (b)
1 | Lewis N S, Nocera D G. Powering the planet: chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729-15735. |
2 | Ross M B, de Luna P, Li Y F, et al. Designing materials for electrochemical carbon dioxide recycling[J]. Nature Catalysis, 2019, 2(8): 648-658. |
3 | Lu Q, Jiao F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering[J]. Nano Energy, 2016, 29: 439-456. |
4 | Bushuyev O S, de Luna P, Dinh C T, et al. What should we make with CO2 and how can we make it?[J]. Joule, 2018, 2(5): 825-832. |
5 | Wang W, Wang S P, Ma X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
6 | Barber J. Photosynthetic energy conversion: natural and artificial[J]. Chemical Society Reviews, 2009, 38(1): 185-196. |
7 | Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chemical Reviews, 2010, 110(11): 6474-6502. |
8 | Zhang L H, Shi Y M, Wang Y, et al. Nanocarbon catalysts: recent understanding regarding the active sites[J]. Advanced Science, 2020, 7(5): 1902126. |
9 | Messinger J, Ishitani O, Wang D W. Artificial photosynthesis - from sunlight to fuels and valuable products for a sustainable future[J]. Sustainable Energy & Fuels, 2018, 2(9): 1891-1892. |
10 | He J, Janáky C. Recent advances in solar-driven carbon dioxide conversion: expectations versus reality[J]. ACS Energy Letters, 2020, 5(6): 1996-2014. |
11 | Birdja Y Y, Pérez-Gallent E, Figueiredo M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745. |
12 | Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews, 2019, 119(12): 7610-7672. |
13 | Hori Y, Kikuchi K, Suzuki S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1985, 14(11): 1695-1698. |
14 | Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper[J]. ACS Energy Letters, 2018, 3(7): 1545-1556. |
15 | Ren D, Deng Y L, Handoko A D, et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (Ⅰ) oxide catalysts[J]. ACS Catalysis, 2015, 5(5): 2814-2821. |
16 | Gattrell M, Gupta N, Co A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper[J]. Journal of Electroanalytical Chemistry, 2006, 594(1): 1-19. |
17 | Li J, Wang Z Y, McCallum C, et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction[J]. Nature Catalysis, 2019, 2(12): 1124-1131. |
18 | Peterson A A, Abild-Pedersen F, Studt F, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy & Environmental Science, 2010, 3(9): 1311-1315. |
19 | Peterson A A, Nørskov J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts[J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 251-258. |
20 | Nie X W, Esopi M R, Janik M J, et al. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps[J]. Angewandte Chemie International Edition, 2013, 52(9): 2459-2462. |
21 | Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989, 85(8): 2309. |
22 | Kuhl K P, Cave E R, Abram D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050. |
23 | Wang L M, Chen W L, Zhang D D, et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019, 48(21): 5310-5349. |
24 | Tomboc G M, Choi S, Kwon T, et al. Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs[J]. Advanced Materials, 2020, 32(17): 1908398. |
25 | Dai L, Qin Q, Wang P, et al. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide[J]. Science Advances, 2017, 3(9): e1701069. |
26 | Li C W, Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. Journal of the American Chemical Society, 2012, 134(17): 7231-7234. |
27 | Li C W, Ciston J, Kanan M W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper[J]. Nature, 2014, 508(7497): 504-507. |
28 | Verdaguer-Casadevall A, Li C W, Johansson T P, et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts[J]. Journal of the American Chemical Society, 2015, 137(31): 9808-9811. |
29 | Zhang H C, Li J, Cheng M J, et al. CO electroreduction: current development and understanding of Cu-based catalysts[J]. ACS Catalysis, 2019, 9(1): 49-65. |
30 | Raciti D, Cao L, Livi K J T, et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires[J]. ACS Catalysis, 2017, 7(7): 4467-4472. |
31 | Xiao H, Goddard W A, Cheng T, et al. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(26): 6685-6688. |
32 | Cao L, Raciti D, Li C Y, et al. Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires[J]. ACS Catalysis, 2017, 7(12): 8578-8587. |
33 | Raciti D, Livi K J, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction[J]. Nano Letters, 2015, 15(10): 6829-6835. |
34 | Chen Z Q, Wang T, Liu B, et al. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol[J]. Journal of the American Chemical Society, 2020, 142(15): 6878-6883. |
35 | Tan Z H, Peng T Y, Tan X J, et al. Controllable synthesis of leaf-like CuO nanosheets for selective CO2 electroreduction to ethylene[J]. ChemElectroChem, 2020, 7(9): 2020-2025. |
36 | Wang W H, Ning H, Yang Z X, et al. Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4[J]. Electrochimica Acta, 2019, 306: 360-365. |
37 | Ning H, Wang X S, Wang W H, et al. Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4[J]. Carbon, 2019, 146: 218-223. |
38 | Ning H, Mao Q H, Wang W H, et al. N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4[J]. Journal of Alloys and Compounds, 2019, 785: 7-12. |
39 | Bagger A, Ju W, Varela A S, et al. Electrochemical CO2 reduction: classifying Cu facets[J]. ACS Catalysis, 2019, 9(9): 7894-7899. |
40 | Wang Z N, Yang G, Zhang Z R, et al. Selectivity on etching: creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction[J]. ACS Nano, 2016, 10(4): 4559-4564. |
41 | Hori Y, Takahashi I, Koga O, et al. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes[J]. Journal of Molecular Catalysis A: Chemical, 2003, 199(1/2): 39-47. |
42 | Schouten K J P, Kwon Y, van der Ham C J M, et al. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes[J]. Chemical Science, 2011, 2(10): 1902-1909. |
43 | Schouten K J P, Qin Z S, Pérez Gallent E, et al. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes[J]. Journal of the American Chemical Society, 2012, 134(24): 9864-9867. |
44 | Jiang K, Sandberg R B, Akey A J, et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction[J]. Nature Catalysis, 2018, 1(2): 111-119. |
45 | Loiudice A, Lobaccaro P, Kamali E A, et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2016, 55(19): 5789-5792. |
46 | Zhao Z L, Chen Z Z, Zhang X, et al. Generalized surface coordination number as an activity descriptor for CO2 reduction on Cu surfaces[J]. The Journal of Physical Chemistry C, 2016, 120(49): 28125-28130. |
47 | Li H J, Li Y D, Koper M T M, et al. Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis[J]. Journal of the American Chemical Society, 2014, 136(44): 15694-15701. |
48 | Li H Q, Xiao N, Wang Y W, et al. Promoting the electroreduction of CO2 with oxygen vacancies on a plasma-activated SnOx/carbon foam monolithic electrode[J]. Journal of Materials Chemistry A, 2020, 8(4): 1779-1786. |
49 | Lee S, Kim D, Lee J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst[J]. Angewandte Chemie International Edition, 2015, 54(49): 14701-14705. |
50 | de Luna P, Quintero-Bermudez R, Dinh C T, et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nature Catalysis, 2018, 1(2): 103-110. |
51 | Mistry H, Varela A S, Bonifacio C S, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7: 12123. |
52 | Handoko A D, Chan K W, Yeo B S. CH3 mediated pathway for the electroreduction of CO2 to ethane and ethanol on thick oxide-derived copper catalysts at low overpotentials[J]. ACS Energy Letters, 2017, 2(9): 2103-2109. |
53 | Martić N, Reller C, MacAuley C, et al. Paramelaconite-enriched copper-based material as an efficient and robust catalyst for electrochemical carbon dioxide reduction[J]. Advanced Energy Materials, 2019, 9(29): 1901228. |
54 | Yang P P, Zhang X L, Gao F Y, et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels[J]. Journal of the American Chemical Society, 2020, 142(13): 6400-6408. |
55 | Liu C, Lourenço M P, Hedström S, et al. Stability and effects of subsurface oxygen in oxide-derived Cu catalyst for CO2 reduction[J]. The Journal of Physical Chemistry C, 2017, 121(45): 25010-25017. |
56 | Eilert A, Cavalca F, Roberts F S, et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction[J]. The Journal of Physical Chemistry Letters, 2017, 8(1): 285-290. |
57 | Xin H, LaRue J, Öberg H, et al. Strong influence of coadsorbate interaction on CO desorption dynamics on Ru (0001) probed by ultrafast X-ray spectroscopy and ab initio simulations[J]. Physical Review Letters, 2015, 114(15): 156101. |
58 | Cavalca F, Ferragut R, Aghion S, et al. Nature and distribution of stable subsurface oxygen in copper electrodes during electrochemical CO2 reduction[J]. The Journal of Physical Chemistry C, 2017, 121(45): 25003-25009. |
59 | Garza A J, Bell A T, Head-Gordon M. Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper?[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 601-606. |
60 | Calle-Vallejo F, Koper M T M. Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes[J]. Angewandte Chemie International Edition, 2013, 52(28): 7282-7285. |
61 | He Y H, Jiang W J, Zhang Y, et al. Pore-structure-directed CO2 electroreduction to formate on SnO2/C catalysts[J]. Journal of Materials Chemistry A, 2019, 7(31): 18428-18433. |
62 | Yang K D, Ko W R, Lee J H, et al. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode[J]. Angewandte Chemie International Edition, 2017, 56(3): 796-800. |
63 | Zhuang T T, Pang Y J, Liang Z Q, et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide[J]. Nature Catalysis, 2018, 1(12): 946-951. |
64 | Li F, Gu G H, Choi C, et al. Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2[J]. Applied Catalysis B: Environmental, 2020, 277: 119241. |
65 | Kas R, Kortlever R, Yılmaz H, et al. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions[J]. ChemElectroChem, 2015, 2(3): 354-358. |
66 | Varela A S, Kroschel M, Reier T, et al. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH[J]. Catalysis Today, 2016, 260: 8-13. |
67 | Xiao H, Cheng T, Goddard W A, et al. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111)[J]. Journal of the American Chemical Society, 2016, 138(2): 483-486. |
68 | Wakerley D, Lamaison S, Ozanam F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface[J]. Nature Materials, 2019, 18(11): 1222-1227. |
69 | Raciti D, Mao M, Park J H, et al. Mass transfer effects in CO2 reduction on Cu nanowire electrocatalysts[J]. Catalysis Science & Technology, 2018, 8(9): 2364-2369. |
70 | Endrődi B, Bencsik G, Darvas F, et al. Continuous-flow electroreduction of carbon dioxide[J]. Progress in Energy and Combustion Science, 2017, 62: 133-154. |
71 | Luc W, Fu X B, Shi J J, et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate[J]. Nature Catalysis, 2019, 2(5): 423-430. |
72 | Singh M R, Kwon Y, Lum Y, et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American Chemical Society, 2016, 138(39): 13006-13012. |
73 | Gupta N, Gattrell M, MacDougall B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions[J]. Journal of Applied Electrochemistry, 2006, 36(2): 161-172. |
74 | Schouten K J P, Pérez Gallent E, Koper M T M. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes[J]. Journal of Electroanalytical Chemistry, 2014, 716: 53-57. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[14] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[15] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||