化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4584-4593.DOI: 10.11949/0438-1157.20210135
收稿日期:
2021-01-21
修回日期:
2021-04-08
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
毕勤成
作者简介:
王腾(1992—),男,博士研究生, Teng WANG(),Qincheng BI(),Miao GUI,Zhaohui LIU
Received:
2021-01-21
Revised:
2021-04-08
Online:
2021-09-05
Published:
2021-09-05
Contact:
Qincheng BI
摘要:
采用光纤探针法和高速摄影法对垂直上升气液两相弹状流的液弹区含气率分布进行了试验研究,测试管径为15 mm。一种基于机器学习的图像处理技术用来识别气液两相界面,通过搭建气泡边界提取的神经网路系统,使用构建的气泡边界数据库对模型进行多次迭代训练,该方法可以有效地识别多种复杂类型的气泡边界。试验得到了弹状流液弹区的径向含气率分布曲线,结果表明,壁峰分布是液弹区含气率分布的主要形式,其中泰勒气泡的尾迹效应对分布形式有重要影响,尾迹的旋涡中心和含气率分布的峰值相对应。针对弹状流液弹区径向含气率分布的两个主要特征——中心局部含气率和壁峰位置,分别提出了相应的预测公式,且与本文的试验数据吻合良好。
中图分类号:
王腾, 毕勤成, 桂淼, 刘朝晖. 弹状流液弹区含气率分布的试验研究[J]. 化工学报, 2021, 72(9): 4584-4593.
Teng WANG, Qincheng BI, Miao GUI, Zhaohui LIU. Experimental study on void fraction distribution in liquid slug of vertical upward slug flow[J]. CIESC Journal, 2021, 72(9): 4584-4593.
参数 | 最大相对不确定度/% |
---|---|
定性压力P/MPa | 0.48 |
定性温度Tin/℃ | 1.82 |
表观液相速度Uls/(m/s) | 1.5 |
表观气相速度Ugs/(m/s) | 1.0 |
局部含气率αl | 8.4 |
气相速度U/(m/s) | 12.6 |
气泡平均索特直径Dsm/mm | 15.2 |
像素面积 | 0.5 |
表1 测量值的不确定度
Table 1 Measurement uncertainty
参数 | 最大相对不确定度/% |
---|---|
定性压力P/MPa | 0.48 |
定性温度Tin/℃ | 1.82 |
表观液相速度Uls/(m/s) | 1.5 |
表观气相速度Ugs/(m/s) | 1.0 |
局部含气率αl | 8.4 |
气相速度U/(m/s) | 12.6 |
气泡平均索特直径Dsm/mm | 15.2 |
像素面积 | 0.5 |
图 8 基于Mendez-Diaz准则[28]的径向含气率分布形式判别
Fig. 8 Identification of the radial void fraction distribution of the discrete bubbles in liquid slugs, employing the criterion proposed by Mendez-Diaz
研究方法 | 管径/mm | 流型 | 壁峰位置 | 峰值含气率与中心含气率比值 | 文献 |
---|---|---|---|---|---|
试验/探针法、图像法 | 15 | 弹状流液弹区 | 0.5R~0.8R | 1.07~1.26 | 本文 |
试验/探针法 | 50 | 泡状流 | 0.8R~0.95R | 1.18~1.58 | [ |
试验/热膜风速探头 | 38 | 泡状流 | 0.85R~0.95R | 1.16~8.4 | [ |
试验/电导法 | 14.8 | 泡状流 | 0.75R | 2.36 | [ |
数值模拟 | 40 | 泡状流 | 0.85R | 8.4 | [ |
表2 几个典型的泡状流壁峰分布形式与本文液弹区壁峰分布形式的对比
Table 2 Comparison between wall-peak distributions of several typical bubbly flows with that of liquid slugs in this study
研究方法 | 管径/mm | 流型 | 壁峰位置 | 峰值含气率与中心含气率比值 | 文献 |
---|---|---|---|---|---|
试验/探针法、图像法 | 15 | 弹状流液弹区 | 0.5R~0.8R | 1.07~1.26 | 本文 |
试验/探针法 | 50 | 泡状流 | 0.8R~0.95R | 1.18~1.58 | [ |
试验/热膜风速探头 | 38 | 泡状流 | 0.85R~0.95R | 1.16~8.4 | [ |
试验/电导法 | 14.8 | 泡状流 | 0.75R | 2.36 | [ |
数值模拟 | 40 | 泡状流 | 0.85R | 8.4 | [ |
图10 泰勒气泡尾迹区和整个液弹区的径向含气率分布形式对比
Fig.10 Comparison between the radial void fraction distribution of the Taylor bubble wake region and that of the entire liquid slug region
10 | Nogueira S, Riethmuller M L, Campos J B L M, et al. Flow patterns in the wake of a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids: an experimental study[J]. Chemical Engineering Science, 2006, 61(22): 7199-7212. |
11 | de Azevedo M B, Santos D D, Faccini J L H, et al. Experimental study of the falling film of liquid around a Taylor bubble[J]. International Journal of Multiphase Flow, 2017, 88: 133-141. |
12 | Guet S, Decarre S, Henriot V, et al. Void fraction in vertical gas-liquid slug flow: influence of liquid slug content[J]. Chemical Engineering Science, 2006, 61(22): 7336-7350. |
13 | Gui M, Liu Z H, Liao B, et al. Void fraction measurements of steam-water two-phase flow in vertical rod bundle: comparison among different techniques[J]. Experimental Thermal and Fluid Science, 2019, 109: 109881. |
14 | Yang Q Y, Jin N D, Zhai L S, et al. Experimental study of slug and churn flows in a vertical pipe using plug-in optical fiber and conductance sensors[J]. Experimental Thermal and Fluid Science, 2019, 107: 16-28. |
15 | Kesana N R, Parsi M, Vieira R E, et al. Visualization of gas-liquid multiphase pseudo-slug flow using wire-mesh sensor[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 477-490. |
16 | Cerqueira R F L, Paladino E E, Ynumaru B K, et al. Image processing techniques for the measurement of two-phase bubbly pipe flows using particle image and tracking velocimetry (PIV/PTV)[J]. Chemical Engineering Science, 2018, 189: 1-23. |
17 | 李坤, 严天宇, 随志强, 等. 竖直矩形窄缝通道内气液两相流的实验研究[J]. 动力工程学报, 2020, 40(1): 39-43. |
Li K, Yan T Y, Sui Z Q, et al. Study on gas-liquid two-phase flow in a vertical rectangular narrow channel [J]. Journal of Chinese Society of Power Engineering, 2020, 40(1): 39-43. | |
18 | Majumder S K. Acknowledgment[M]//Hydrodynamics and Transport Processes of Inverse Bubbly Flow. Amsterdam: Elsevier, 2016. |
19 | 陈顺成, 梁志军, 申启访. 基于机器学习的素描图像处理技术[J]. 科技创新与应用, 2019(22): 152-153. |
Chen S C, Liang Z J, Shen Q F. Image sketch processing technology based on machine learning [J]. Technology Innovation and Application, 2019(22): 152-153. | |
20 | Besagni G, Brazzale P, Fiocca A, et al. Estimation of bubble size distributions and shapes in two-phase bubble column using image analysis and optical probes[J]. Flow Measurement and Instrumentation, 2016, 52: 190-207. |
1 | Morgado A O, Miranda J M, Araújo J D P, et al. Review on vertical gas-liquid slug flow[J]. International Journal of Multiphase Flow, 2016, 85: 348-368. |
2 | Mayor T S, Pinto A M F R, Campos J B L M. Vertical slug flow in laminar regime in the liquid and turbulent regime in the bubble wake—comparison with fully turbulent and fully laminar regimes[J]. Chemical Engineering Science, 2008, 63(14): 3614-3631. |
3 | Rattner A S, Garimella S. Vertical upward intermediate scale Taylor flow: experiments and kinematic closure[J]. International Journal of Multiphase Flow, 2015, 75: 107-123. |
21 | Wang T, Liu Z H, Gui M, et al. Void fraction measurements in two-phase flow across vertical tube bundles using optical probes [C]// 8th International Conference on Vortex Flow Mechanics. Xi'an, 2018. |
22 | Shawkat M E, Ching C Y, Shoukri M. Bubble and liquid turbulence characteristics of bubbly flow in a large diameter vertical pipe[J]. International Journal of Multiphase Flow, 2008, 34(8): 767-785. |
23 | Jin H B, Yang S H, Wang M, et al. Measurement of gas holdup profiles in a gas liquid cocurrent bubble column using electrical resistance tomography[J]. Flow Measurement and Instrumentation, 2007, 18(5/6): 191-196. |
24 | Babaei R, Bonakdarpour B, Ein-Mozaffari F. The use of electrical resistance tomography for the characterization of gas holdup inside a bubble column bioreactor containing activated sludge[J]. Chemical Engineering Journal, 2015, 268: 260-269. |
4 | Jaeger J, Santos C M, Rosa L M, et al. Experimental and numerical evaluation of slugs in a vertical air-water flow[J]. International Journal of Multiphase Flow, 2018, 101: 152-166. |
5 | 夏国栋, 周芳德,胡明胜. 垂直管内气液两相弹状流中长气泡运动规律的研究[J]. 西安交通大学学报, 1996, 30(5): 17-22. |
Xia G D, Zhou F D, Hu M S. Study on the motion of long bubbles in gas-liquid slug flow[J]. Journal of Xi'an Jiaotong University, 1996, 30(5): 17-22. | |
6 | 夏国栋, 周芳德, 胡明胜. 垂直上升气液弹状流中含气率分布的实验研究[J]. 高校化学工程学报, 1999, 13(5): 452-458. |
Xia G D, Zhou F D, Hu M S. An investigation on the void fraction of gas-liquid slug flow in vertical tubes [J]. Journal of Chemical Engineering of Chinese Universities, 1999, 13(5): 452-458. | |
7 | 夏国栋, 刘亮, 马重芳, 等. 气液两相弹状流动的实验研究: 液弹长度及Taylor气泡长度份额[J]. 北京工业大学学报, 2000, 26 (2): 35-38. |
Xia G D, Liu L, Ma C F, et al. An experimental study on gas liquid two-phase slug flow-liquid slug length and the fraction of Taylor[J]. Journal of Beijing Polytechnic University, 2000, 26 (2): 35-38. | |
8 | 夏国栋, 彭岩, 周芳德, 等. 垂直上升气液两相弹状流模型[J]. 化工学报, 1999, 50(6): 792-798. |
Xia G D,Peng Y, Zhou F D, et al. Hydrodynamic model of upward gas-liquid slug flow in vertical tubes[J]. Journal of Chemical Industry and Engineering (China), 1999, 50(6): 792-798. | |
9 | Nogueira S, Riethmuler M L, Campos J B L M, et al. Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids[J]. Chemical Engineering Science, 2006, 61(2): 845-857. |
25 | Liu T J, Bankoff S G. Structure of air-water bubbly flow in a vertical pipe(Ⅱ): Void fraction, bubble velocity and bubble size distribution[J]. International Journal of Heat and Mass Transfer, 1993, 36(4): 1061-1072. |
26 | Marfaing O, Guingo M, Laviéville J, et al. An analytical relation for the void fraction distribution in a fully developed bubbly flow in a vertical pipe[J]. Chemical Engineering Science, 2016, 152: 579-585. |
27 | Nakoryakov V E, Kashinsky O N, Randin V V, et al. Gas-liquid bubbly flow in vertical pipes[J]. Journal of Fluids Engineering, 1996, 118(2): 377-382. |
28 | Mendez-Diaz S, Zenit R, Chiva S, et al. A criterion for the transition from wall to core peak gas volume fraction distributions in bubbly flows[J]. International Journal of Multiphase Flow, 2012, 43: 56-61. |
29 | 幸奠川, 孙立成, 阎昌琪, 等. 竖直圆管内泡状流空泡份额径向分布实验研究[J]. 原子能科学技术, 2013, 47(2): 233-237. |
Xing D C, Sun L C, Yan C Q, et al. Experimental investigation on void fraction radial distribution for bubbly flow in vertical circular tube[J]. Atomic Energy Science and Technology, 2013, 47(2): 233-237. | |
30 | Zenit R, Magnaudet J. Path instability of rising spheroidal air bubbles: a shape-controlled process[J]. Physics of Fluids, 2008, 20(6):061702. |
31 | Taitel Y, Bornea D, Dukler A E. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes[J]. AIChE Journal, 1980, 26(3): 345-354. |
32 | Mi Y, Ishii M, Tsoukalas L H. Investigation of vertical slug flow with advanced two-phase flow instrumentation[J]. Nuclear Engineering and Design, 2001, 204(1/2/3): 69-85. |
[1] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[4] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[5] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[8] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[11] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[14] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[15] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||