化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4389-4398.DOI: 10.11949/0438-1157.20220769
杨蕊1,2(), 朱宝锦1,2, 吕超1,2, 张磊1,2, 肖迎松1,2
收稿日期:
2022-05-31
修回日期:
2022-08-28
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
杨蕊
作者简介:
杨蕊(1982—),女,博士,副教授,3949800@qq.com
基金资助:
Rui YANG1,2(), Baojin ZHU1,2, Chao LYU1,2, Lei ZHANG1,2, Yingsong XIAO1,2
Received:
2022-05-31
Revised:
2022-08-28
Online:
2022-10-05
Published:
2022-11-02
Contact:
Rui YANG
摘要:
运用高速摄像技术对流量脉动条件下旋流分离器内气泡动力学行为及气液两相流流型展开研究。研究发现,在完整脉动周期内,流量在3.62~4.18 m3/h范围内波动,流量增大段的气核整体向溢流口方向运移,流量减小段的气核整体向底流口方向运移,气核大小及形态变化呈现周期往复性。通过脉动周期内特殊帧的分析,得出流量脉动条件下旋流场内气液两相流流型主要包括:气泡流、塞状流、弹状流、丝状流及波状流等五种形式。根据实验得出的气液两相折算速度,确定了脉动条件下气液两相流流型转换界限图,而气泡间的聚并破碎行为是产生气液两相流型的主要原因,最终构建了表征截面含气量和分离效率之间关系的评价模型。
中图分类号:
杨蕊, 朱宝锦, 吕超, 张磊, 肖迎松. 脉动条件下旋流场内气液两相流流型及其转变机理[J]. 化工学报, 2022, 73(10): 4389-4398.
Rui YANG, Baojin ZHU, Chao LYU, Lei ZHANG, Yingsong XIAO. Study on flow pattern and transition mechanism of gas-liquid two-phase flow in swirl field under pulsating flow[J]. CIESC Journal, 2022, 73(10): 4389-4398.
参数 | 数值/mm |
---|---|
混合相入口管尺寸a×b | 15×5 |
溢流管直径D1 | 26 |
柱段直径D2 | 70 |
底流管直径D3 | 12 |
小柱段直径D4 | 24 |
分离器总长度L1 | 746 |
柱段长度L2 | 218 |
分离器锥段长度L3 | 236 |
小柱段长度L4 | 111 |
底锥长度L5 | 247 |
表1 尺寸参数
Table 1 Dimension parameters
参数 | 数值/mm |
---|---|
混合相入口管尺寸a×b | 15×5 |
溢流管直径D1 | 26 |
柱段直径D2 | 70 |
底流管直径D3 | 12 |
小柱段直径D4 | 24 |
分离器总长度L1 | 746 |
柱段长度L2 | 218 |
分离器锥段长度L3 | 236 |
小柱段长度L4 | 111 |
底锥长度L5 | 247 |
图2 实验流程1—水罐;2,4,6,8,11,12,14,17,19,20,23,24,28—阀门; 3—往复泵; 5,9,21—浮子流量计; 7—气液旋流分离器; 10,16,22—压力表; 13—空气压缩机; 15—压力存储罐; 18—气体流量计; 25—气相排空池; 26—脉动控制主机; 27—变频器
Fig.2 Experimental process
f /帧 | 气相折算速度vsg/(m/s) | 液相折算速度vsl /(m/s) |
---|---|---|
1 | 0.793 | 5.707 |
150 | 0.621 | 5.686 |
190 | 0.274 | 5.652 |
230 | 0.506 | 5.475 |
314 | 0.171 | 4.811 |
420 | 0.159 | 3.815 |
450 | 0.342 | 4.701 |
528 | 0.613 | 4.725 |
628 | 0.913 | 4.838 |
表2 折算速度
Table 2 Conversion speed
f /帧 | 气相折算速度vsg/(m/s) | 液相折算速度vsl /(m/s) |
---|---|---|
1 | 0.793 | 5.707 |
150 | 0.621 | 5.686 |
190 | 0.274 | 5.652 |
230 | 0.506 | 5.475 |
314 | 0.171 | 4.811 |
420 | 0.159 | 3.815 |
450 | 0.342 | 4.701 |
528 | 0.613 | 4.725 |
628 | 0.913 | 4.838 |
参数 | 数值 | 标准误差 | t值 | 概率> | 相关性 |
---|---|---|---|---|---|
A1 | 76.08032 | 0.34724 | 219.10098 | 3.75824×10-11 | 0.6802 |
A2 | 87.91143 | 0.60443 | 145.44468 | 2.91471×10-10 | 0.86843 |
0.0845 | 0.00296 | 28.53214 | 9.90679×10-7 | 0.75051 | |
p | -23.94055 | 3.78331 | -6.32794 | 0.00145 | 0.81657 |
表3 参数值及误差
Table 3 Parameter values and errors
参数 | 数值 | 标准误差 | t值 | 概率> | 相关性 |
---|---|---|---|---|---|
A1 | 76.08032 | 0.34724 | 219.10098 | 3.75824×10-11 | 0.6802 |
A2 | 87.91143 | 0.60443 | 145.44468 | 2.91471×10-10 | 0.86843 |
0.0845 | 0.00296 | 28.53214 | 9.90679×10-7 | 0.75051 | |
p | -23.94055 | 3.78331 | -6.32794 | 0.00145 | 0.81657 |
评价指标 | 数值 |
---|---|
Reduced Chi-Sqr | 0.15034 |
R2(COD) | 0.99571 |
调整后R2 | 0.99314 |
表4 拟合效果
Table 4 Fitting effect
评价指标 | 数值 |
---|---|
Reduced Chi-Sqr | 0.15034 |
R2(COD) | 0.99571 |
调整后R2 | 0.99314 |
1 | Yan B H, Gu H Y, Yu L. Effects of rolling motion on the flow and heat transfer of turbulent pulsating flow in channels[J]. Progress in Nuclear Energy, 2012, 56: 24-36. |
2 | Tubaldi E, Amabili M, Alijani F. Nonlinear vibrations of plates in axial pulsating flow[J]. Journal of Fluids and Structures, 2015, 56: 33-55. |
3 | 杨容, 侯勇俊, 卢广荣. 脉动进料气液旋流分离器分离性能分析[J]. 化学工业与工程, 2022, 39(5): 109-118. |
Yang R, Hou Y J, Lu G R. Separation performance analysis of gas-liquid cyclone separator with pulsating feed[J]. Chemical Industry and Engineering, 2022, 39(5): 109-118. | |
4 | 赵立新, 蒋明虎, 孙德智, 等. 脉动流条件下气体对旋流分离特性的影响[J]. 石油机械, 2005, 33(5): 1-3, 83. |
Zhao L X, Jiang M H, Sun D Z, et al. Effect of gas content on the separation characteristics of hydrocyclones under pulsating flow condition[J]. China Petroleum Machinery, 2005, 33(5): 1-3, 83. | |
5 | 倪玲英. 断续流对旋流器油水分离效率影响的实验研究[J]. 过滤与分离, 2003, 13(2): 22-24. |
Ni L Y. Experimental study on the intermittent flow's effect on oil-water separating in cyclone[J]. Filter & Separator, 2003, 13(2): 22-24. | |
6 | Adineh M, Nematollahi M, Erfaninia A. Experimental and numerical void fraction measurement for modeled two-phase flow inside a vertical pipe[J]. Annals of Nuclear Energy, 2015, 83: 188-192. |
7 | 马晓旭, 田茂诚. U形弯头单元内气液两相流型及压降波动特性[J]. 化工学报, 2018, 69(5): 1972-1981. |
Ma X X, Tian M C. Flow regimes of gas-liquid two phase flow in a U-bend unit and characteristics of pressure drop fluctuations[J]. CIESC Journal, 2018, 69(5): 1972-1981. | |
8 | Wang C L, Tian M C, Zhang J Z, et al. Experimental study on liquid-liquid two-phase flow patterns and plug hydrodynamics in a small channel[J]. Experimental Thermal and Fluid Science, 2021, 129: 110455. |
9 | Deng L J, Zhang J, Hao G N, et al. Numerical and experimental investigation on the effect of the two-phase flow pattern on heat transfer of piston cooling gallery[J]. Mechanics & Industry, 2019, 20(5): 507. |
10 | 湛伟, 刘西洋, 朱春英, 等. 台阶式并行微通道内液液两相流流型及其转变机理[J]. 化工学报, 2022, 73(1): 184-193. |
Zhan W, Liu X Y, Zhu C Y, et al. Study on the flow patterns and transition mechanism of the liquid-liquid two-phase flow in a step-emulsification microdevice with parallel microchannels[J]. CIESC Journal, 2022, 73(1): 184-193. | |
11 | Fiderek P, Kucharski J, Wajman R. Fuzzy inference for two-phase gas-liquid flow type evaluation based on raw 3D ECT measurement data[J]. Flow Measurement and Instrumentation, 2017, 54: 88-96. |
12 | Monte Verde W, Biazussi J L, Sassim N A, et al. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers[J]. Experimental Thermal and Fluid Science, 2017, 85: 37-51. |
13 | Rao Y C, Ding B Y, Wang S L, et al. Flow pattern and pressure drop of gas-liquid two-phase swirl flow in a horizontal pipe[J]. Journal of Central South University, 2019, 26(9): 2528-2542. |
14 | Gupta B, Nayak A K, Kandar T K, et al. Investigation of air-water two phase flow through a venturi[J]. Experimental Thermal and Fluid Science, 2016, 70: 148-154. |
15 | Gao Z K, Jin N D. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks[J]. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 2009, 79(6 Pt 2): 066303. |
16 | dos Santos E N, de Paiva Rodrigues R L, Pipa D R, et al. Three-dimensional bubble shape estimation in two-phase gas-liquid slug flow[J]. IEEE Sensors Journal, 2018, 18(3): 1122-1130. |
17 | 杨伟霞, 梁若渺, 方志刚, 等. 倾斜管气液两相流型转化边界[J]. 科学技术与工程, 2021, 21(22): 9353-9359. |
Yang W X, Liang R M, Fang Z G, et al. Research on flow pattern transformation of gas-liquid two-phase-flow in clined pipe[J]. Science Technology and Engineering, 2021, 21(22): 9353-9359. | |
18 | Zhu H R, Duan J F, Cui H T, et al. Experimental research of reciprocating oscillatory gas-liquid two-phase flow[J]. International Journal of Heat and Mass Transfer, 2019, 140: 931-939. |
19 | 孙博, 周云龙, 刘启超. 横向振动下水平通道内气液两相流型研究[J]. 振动与冲击, 2021, 40(20): 302-306. |
Sun B, Zhou Y L, Liu Q C. A study on flow regime of gas-liquid two-phase in a horizontal channel under transverse vibration[J]. Journal of Vibration and Shock, 2021, 40(20): 302-306. | |
20 | 周云龙, 汪俊超, 刘起超. 起伏非线性振动下倾斜上升管内气液两相流流型转变分析[J]. 原子能科学技术, 2020, 54(10): 1787-1794. |
Zhou Y L, Wang J C, Liu Q C. Analysis of gas-liquid two-phase flow pattern transition in inclined rising pipe under fluctuant nonlinear vibration condition[J]. Atomic Energy Science and Technology, 2020, 54(10): 1787-1794. | |
21 | 杜路泉. 基于Matlab的图像信号降噪分析[J]. 湖南工业职业技术学院学报, 2020, 20(5): 12-14. |
Du L Q. Noise reduction analysis of image signal based on Matlab[J]. Journal of Hunan Industry Polytechnic, 2020, 20(5): 12-14. | |
22 | 黄明慧, 刘立群, 常琴, 等. 数字图像处理系统设计与实现[J]. 电脑知识与技术, 2021, 17(4): 29-32. |
Huang M H, Liu L Q, Chang Q, et al. Design and implementation of digital image processing system[J]. Computer Knowledge and Technology, 2021, 17(4): 29-32. | |
23 | 刘利平, 乔乐乐, 蒋柳成. 图像去噪方法概述[J]. 计算机科学与探索, 2021, 15(8): 1418-1431. |
Liu L P, Qiao L L, Jiang L C. Overview of image denoising methods[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1418-1431. | |
24 | 刘光宇, 黄懿, 曾志勇, 等. 基于小波阈值的图像去噪方法研究[J]. 新乡学院学报, 2021, 38(3): 42-47. |
Liu G Y, Huang Y, Zeng Z Y, et al. Research on image denoising method based on wavelet threshold[J]. Journal of Xinxiang University, 2021, 38(3): 42-47. | |
25 | 惠婉玉, 吴玉秀. 图像去噪滤波方法的对比研究[J]. 洛阳理工学院学报(自然科学版), 2021, 31(1): 71-76. |
Hui W Y, Wu Y X. Comparative study on image denoising filter[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2021, 31(1): 71-76. | |
26 | Ofir N, Galun M, Alpert S, et al. On detection of faint edges in noisy images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(4): 894-908. |
27 | Kaspersen J H, Langø T, Lindseth F. Wavelet-based edge detection in ultrasound images[J]. Ultrasound in Medicine & Biology, 2001, 27(1): 89-99. |
28 | 顾建飞, 田昌, 刘继承. 气液两相流超声过程层析成像理论与实验[J]. 仪器仪表学报, 2020, 41(7): 146-154. |
Gu J F, Tian C, Liu J C. Theory and experiment of ultrasonic process tomography for gas-liquid two-phase flow measurement[J]. Chinese Journal of Scientific Instrument, 2020, 41(7): 146-154. | |
29 | 赵子润, 高保禄, 郭云云, 等. 基于改进Canny算法的噪声图像边缘检测[J]. 计算机测量与控制, 2020, 28(12): 202-206, 212. |
Zhao Z R, Gao B L, Guo Y Y, et al. Edge detection of noise image based on improved Canny algorithm[J]. Computer Measurement & Control, 2020, 28(12): 202-206, 212. | |
30 | 李静, 陈桂芬, 丁小奇. 基于改进Canny算法的图像边缘检测方法研究[J]. 计算机仿真, 2021, 38(4): 371-375. |
Li J, Chen G F, Ding X Q. Research on image edge detection method based on improved Canny algorithm[J]. Computer Simulation, 2021, 38(4): 371-375. | |
31 | Zheng Y F, Zhou Y L, Zhou H, et al. Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator[J]. Ultrasonic Imaging, 2015, 37(3): 238-250. |
32 | Accame M, de Natale F G B. Edge detection by point classification of Canny filtered images[J]. Signal Processing, 1997, 60(1): 11-22. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[7] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[8] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[9] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[12] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[13] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[14] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[15] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||