化工学报 ›› 2022, Vol. 73 ›› Issue (2): 941-950.DOI: 10.11949/0438-1157.20210869
收稿日期:
2021-08-28
修回日期:
2021-10-29
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
王景涛
作者简介:
周国莉(1984—),女,博士,副教授,基金资助:
Guoli ZHOU(),Xiangke HAN,Wenjia WU,Jingtao WANG(),Maowa ZHANG,Fengli LI
Received:
2021-08-28
Revised:
2021-10-29
Online:
2022-02-05
Published:
2022-02-18
Contact:
Jingtao WANG
摘要:
随着化工行业的迅速发展,利用纳滤膜对有机溶剂进行高效分离受到了越来越多的关注,但有机溶剂纳滤膜通量和选择性之间普遍存在 trade-off 效应的限制。以相对疏水的g-C3N4纳米片和亲水的直链淀粉(amylose,AM)为构筑单元,利用双针头静电雾化技术制备了异质结构的g-C3N4@AM 层状膜。亲水的直链淀粉促进了极性溶剂的溶解,相对疏水的g-C3N4纳米片实现了通道对极性溶剂的低阻力扩散;两者协同,极大地增强了膜对极性溶剂的渗透性能,而不降低分离能力。与纯g-C3N4层状膜相比,g-C3N4@AM 层状膜对极性溶剂的渗透系数提高了1~2倍,对于尺寸大于 1.5 nm 的染料分子可以实现 99% 以上的截留率。在操作稳定性、压力循环和耐酸碱测试后,膜的渗透性能和截留能力基本保持不变,衰减 < 6%,具有较好的操作稳定性。
中图分类号:
周国莉, 韩项珂, 武文佳, 王景涛, 张毛娃, 李凤丽. 异质结构g-C3N4@AM层状膜构筑及纳滤性能研究[J]. 化工学报, 2022, 73(2): 941-950.
Guoli ZHOU, Xiangke HAN, Wenjia WU, Jingtao WANG, Maowa ZHANG, Fengli LI. Construction heterostructure g-C3N4@AM lamellar membrane and its performance of organic solvent nanofiltation[J]. CIESC Journal, 2022, 73(2): 941-950.
图5 纯g-C3N4膜(A)和g-C3N4@AM膜(B)的XRD、N2 吸附等温线、FTIR和 XPS谱图
Fig.5 XRD,N2 sorption isotherms,FTIR and XPS spectrum of g-C3N4 membrane(A) and g-C3N4 @AM membrane(B)
分离膜名称 | 分离染料 | 溶剂 | 渗透通量/(L·m-2·h-1·bar-1) | 截留率/ % | 文献 |
---|---|---|---|---|---|
MXene | 伊文思蓝 | 水 | 1084 | 90 | [ |
GO | 伊文思蓝 | 水 | 71 | 85 | [ |
MoS2 | 伊文思蓝 | 水 | 245 | 89 | [ |
WS2 | 伊文思蓝 | 水 | 450 | 89 | [ |
GO/PC | 伊文思蓝 | 水 | 71 | 85 | [ |
COF | 亚甲基蓝 | 水 | 125 | 98 | [ |
rGO | 亮黄 | 水 | 88.3 | 99.2 | [ |
rGO-SWCNT | 细胞色素C | 水 | 720 | 98 | [ |
PES | 考马斯亮蓝 | 水 | 100 | 65 | [ |
rGO/PVDF | 亚甲基蓝 | 水 | 21.8 | 99.2 | [ |
HPEI/S-rGO-18 | 碱性品红 | 甲醇 | 74.2 | 88.5 | [ |
(PA/TiO2)/PAN | 聚乙二醇 | 异丙醇 | 0.3 | 95 | [ |
PEI-DBX/PBI | 四环素 | 乙醇 | 4.5 | 99 | [ |
表1 所制备膜与文献报道膜有机溶剂纳滤性能比较
Table 1 The comparison of performance of organic solvent nanofiltration membranes
分离膜名称 | 分离染料 | 溶剂 | 渗透通量/(L·m-2·h-1·bar-1) | 截留率/ % | 文献 |
---|---|---|---|---|---|
MXene | 伊文思蓝 | 水 | 1084 | 90 | [ |
GO | 伊文思蓝 | 水 | 71 | 85 | [ |
MoS2 | 伊文思蓝 | 水 | 245 | 89 | [ |
WS2 | 伊文思蓝 | 水 | 450 | 89 | [ |
GO/PC | 伊文思蓝 | 水 | 71 | 85 | [ |
COF | 亚甲基蓝 | 水 | 125 | 98 | [ |
rGO | 亮黄 | 水 | 88.3 | 99.2 | [ |
rGO-SWCNT | 细胞色素C | 水 | 720 | 98 | [ |
PES | 考马斯亮蓝 | 水 | 100 | 65 | [ |
rGO/PVDF | 亚甲基蓝 | 水 | 21.8 | 99.2 | [ |
HPEI/S-rGO-18 | 碱性品红 | 甲醇 | 74.2 | 88.5 | [ |
(PA/TiO2)/PAN | 聚乙二醇 | 异丙醇 | 0.3 | 95 | [ |
PEI-DBX/PBI | 四环素 | 乙醇 | 4.5 | 99 | [ |
1 | 刘建川, 汪建川, 杨建华. 化工生产中常见有机溶剂的危害与安全防治[J]. 化学工程与装备, 2010(11): 152, 131. |
Liu J C, Wang J C, Yang J H. Hazard and safety prevention of common organic solvents in chemical production [J]. Chemical Engineering & Equipment, 2010(11): 152,131. | |
2 | Marchetti P, Jimenez Solomon M F, Szekely G, et al. Molecular separation with organic solvent nanofiltration: a critical review[J]. Chemical Reviews, 2014, 114(21): 10735-10806. |
3 | 徐颜军, 徐泽海, 孟琴, 等. 新型还原氧化石墨烯/氮化碳复合纳滤膜制备及其性能[J]. 化工学报, 2019, 70(9): 3565-3572. |
Xu Y J, Xu Z H, Meng Q, et al. Preparation and performance of novel rGO/uCN composite nanofiltration membrane[J]. CIESC Journal, 2019, 70(9): 3565-3572. | |
4 | 刘宁, 褚昌辉, 王乾, 等. 用于混合一价盐分离的纳滤膜的制备及性能研究[J]. 化工学报, 2021, 72(1): 578-588. |
Liu N, Chu C H, Wang Q, et al. Preparation of nanofiltration membrane for separation of mixed monovalent salts[J]. CIESC Journal, 2021, 72(1): 578-588. | |
5 | Minhas F T, Memon S, Bhanger M I, et al. Solvent resistant thin film composite nanofiltration membrane: characterization and permeation study[J]. Applied Surface Science, 2013, 282: 887-897. |
6 | Jimenez Solomon M F, Bhole Y, Livingston A G. High flux membranes for organic solvent nanofiltration (OSN)-interfacial polymerization with solvent activation[J]. Journal of Membrane Science, 2012, 423/424: 371-382. |
7 | 高克, 许中煌, 洪昱斌, 等. 氧化石墨烯-陶瓷复合纳滤膜的层层自组装制备及其性能[J].化工学报, 2017, 68(5): 2177-2185. |
Gao K, Xu Z H, Hong Y B, et al. Layer-by-layer self-assembly preparation and performance of GO-ceramics composite nanofiltration membrane[J]. CIESC Journal, 2017, 68(5): 2177-2185. | |
8 | Bhattacharjee C, Saxena V K, Dutta S. Static turbulence promoters in cross-flow membrane filtration: a review[J]. Chemical Engineering Communications, 2020, 207(3): 413-433. |
9 | Wang J, Chen P, Shi B, et al. A regularly channeled lamellar membrane for unparalleled water and organics permeation[J]. Angewandte Chemie International Edition, 2018, 57(23): 6814-6818. |
10 | Liang B, He X, Hou J, et al. Membrane separation in organic liquid: technologies, achievements, and opportunities[J]. Advanced Materials, 2019, 31(45): 1806090. |
11 | Koros W J, Ma Y H, Shimidzu T. Terminology for membranes and membrane processes [J]. Pure and Applied Chemistry, 1996, 68(7): 1479-1489. |
12 | Joseph N, Ahmadiannamini P, Hoogenboom R, et al. Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation[J]. Polym. Chem., 2014, 5(6): 1817-1831. |
13 | Fane A G, Wang R, Hu M X. Synthetic membranes for water purification: status and future[J]. Angewandte Chemie International Edition, 2015, 54(11): 3368-3386. |
14 | Sarkar P, Modak S, Karan S. Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration[J]. Advanced Functional Materials, 2021, 31(3): 2007054. |
15 | Shen J, Liu G P, Huang K, et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving[J]. ACS Nano, 2016, 10(3): 3398-3409. |
16 | Ding L, Wei Y Y, Wang Y J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition, 2017, 56(7): 1825-1829. |
17 | Sun L, Huang H, Peng X. Laminar MoS2 membranes for molecule separation[J]. Chemical Communications, 2013, 49(91): 10718-10720. |
18 | Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
19 | Li H, Song Z, Zhang X, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J]. Science, 2013, 342(6154): 95-98. |
20 | Wang Y, Li L, Wei Y, et al. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers[J]. Angewandte Chemie, 2017, 129(31): 9102-9108. |
21 | Huang L, Chen J, Gao T, et al. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration[J]. Advanced Materials, 2016, 28(39): 8669-8674. |
22 | Wu X, Cui X, Wang Q, et al. Manipulating the cross-layer channels in g-C3N4 nanosheet membranes for enhanced molecular transport[J]. Journal of Materials Chemistry A, 2021, 9(7): 4193-4202. |
23 | Wu X, Liu S, Cui X, et al. Manipulating microenvironments of nanochannels in lamellar membranes by quantum dots for highly enhanced nanofiltration performance[J]. Chemical Engineering Science, 2020, 228: 116001. |
24 | Zhao D, Zhao J, Ji Y, et al. Facilitated water-selective permeation via PEGylation of graphene oxide membrane[J]. Journal of Membrane Science, 2018, 567: 311-320. |
25 | Chen Q, Meng L, Li Q, et al. Water transport and purification in nanochannels controlled by asymmetric wettability[J]. Small, 2011, 7(15): 2225-2231. |
26 | Zhai L, Berg M C, Cebeci F C, et al. Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle[J]. Nano Letters, 2006, 6(6): 1213-1217. |
27 | Wang J, Yuan Z, Wu X, et al. Beetle-inspired assembly of heterostructured lamellar membranes with polymer cluster-patterned surface for enhanced molecular permeation[J]. Advanced Functional Materials, 2019, 29(23): 1900819. |
28 | Wang W, Wang K, Xiao J, et al. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration[J]. International Journal of Biological Macromolecules, 2017, 94: 258-265. |
29 | Huang H B, Mao Y, Ying Y, et al. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes[J]. Chemical Communications, 2013, 49(53): 5963. |
30 | Sun L, Ying Y, Huang H, et al. Ultrafast molecule separation through layered WS2 nanosheet membranes[J]. ACS Nano, 2014, 8(6): 6304-6311. |
31 | Huang H, Song Z, Wei N, et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes[J]. Nature Communications, 2013, 4: 2979. |
32 | Kandambeth S, Biswal B P, Chaudhari H D, et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes[J]. Advanced Materials, 2017, 29(2): 1603945. |
33 | Gao S J, Qin H, Liu P, et al. SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules[J]. Journal of Materials Chemistry A, 2015, 3(12): 6649-6654. |
34 | Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013, 23(29): 3693-3700. |
35 | Zhang H Q, Mao H, Wang J T, et al. Mineralization-inspired preparation of composite membranes with polyethyleneimine-nanoparticle hybrid active layer for solvent resistant nanofiltration[J]. Journal of Membrane Science, 2014, 470: 70-79. |
36 | Asadi Tashvigh A, Chung T S. Facile fabrication of solvent resistant thin film composite membranes by interfacial crosslinking reaction between polyethylenimine and dibromo-p-xylene on polybenzimidazole substrates[J]. Journal of Membrane Science, 2018, 560: 115-124. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[12] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[13] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||