化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3038-3044.DOI: 10.11949/0438-1157.20220219
乃学瑛1,2(),吴鹏1,2,3,程远1,2,3,肖剑飞1,2,3,刘鑫1,2,董亚萍1,2
收稿日期:
2022-02-23
修回日期:
2022-05-30
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
乃学瑛
作者简介:
乃学瑛(1973—),女,博士,副研究员, 基金资助:
Xueying NAI1,2(),Peng WU1,2,3,Yuan CHENG1,2,3,Jianfei XIAO1,2,3,Xin LIU1,2,Yaping DONG1,2
Received:
2022-02-23
Revised:
2022-05-30
Online:
2022-07-05
Published:
2022-08-01
Contact:
Xueying NAI
摘要:
以硫酸镁和氢氧化钠为原料,邻苯二甲酸氢钾为络合剂,采用络合-水热法制备了碱式硫酸镁纳米线;采用宏观动力学方法结合微观结构分析,进行碱式硫酸镁结晶机理研究。通过分析Mg浓度与时间的变化关系曲线,建立结晶动力学方程;然后根据晶体缺陷分析碱式硫酸镁纳米线表面成核机制。实验结果表明:碱式硫酸镁纳米线在140和160℃结晶机理为多核控制表面生长;在180和200℃时结晶机理发生了变化,转变为线性控制表面生长;碱式硫酸镁纳米线的晶格中存在着较多的刃型位错与螺型位错,可以促进其表面成核、快速生长。
中图分类号:
乃学瑛, 吴鹏, 程远, 肖剑飞, 刘鑫, 董亚萍. 水热生长碱式硫酸镁纳米线结晶动力学研究[J]. 化工学报, 2022, 73(7): 3038-3044.
Xueying NAI, Peng WU, Yuan CHENG, Jianfei XIAO, Xin LIU, Yaping DONG. Study on hydrothermal crystallization kinetics of magnesium oxysulfate nanowires[J]. CIESC Journal, 2022, 73(7): 3038-3044.
动力学模型 | 140℃ | 160℃ | 180℃ | 200℃ | ||||
---|---|---|---|---|---|---|---|---|
R2 | RSS | R2 | RSS | R2 | RSS | R2 | RSS | |
MA-1 | 0.9819 | 0.0022 | 0.9963 | 0.0005 | 0.9421 | 0.0101 | 0.9351 | 0.0102 |
MA-2 | 0.8984 | 0.0060 | 0.9100 | 0.0086 | 0.9790 | 0.0029 | 0.9555 | 0.0058 |
MA-3 | 0.5498 | 0.0201 | 0.6151 | 0.0279 | 0.9068 | 0.0077 | 0.9176 | 0.0081 |
MA-4 | 0.2961 | 0.0326 | 0.3584 | 0.0463 | 0.7054 | 0.0191 | 0.8086 | 0.0160 |
MB-1 | 0.4596 | 0.4900 | 0.6073 | 0.1061 | 0.4346 | 0.4464 | 0.4479 | 0.4680 |
MB-2 | 0.4600 | 0.4871 | 0.4405 | 0.5617 | 0.4345 | 0.4462 | 0.4481 | 0.4689 |
MB-3 | 0.4598 | 0.4947 | 0.4409 | 0.5656 | 0.4351 | 0.4474 | 0.4481 | 0.4716 |
MB-4 | 0.4598 | 0.4947 | 0.4409 | 0.5657 | 0.4349 | 0.4500 | 0.4481 | 0.4715 |
MC-1 | 0.8715 | 0.0059 | 0.8031 | 0.0145 | 0.9979 | 0.0002 | 0.9811 | 0.0021 |
MC-2 | 0.4780 | 0.0202 | 0.4832 | 0.0329 | 0.8782 | 0.0080 | 0.9446 | 0.0043 |
MC-3 | 0.2472 | 0.0323 | 0.2736 | 0.0502 | 0.6510 | 0.0201 | 0.8026 | 0.0122 |
MC-4 | 0.1311 | 0.0418 | 0.1644 | 0.0641 | 0.4218 | 0.0330 | 0.6209 | 0.0208 |
表1 不同温度下三种动力学模型的拟合结果
Table 1 Outcomes of three dynamic models fitting at different temperatures
动力学模型 | 140℃ | 160℃ | 180℃ | 200℃ | ||||
---|---|---|---|---|---|---|---|---|
R2 | RSS | R2 | RSS | R2 | RSS | R2 | RSS | |
MA-1 | 0.9819 | 0.0022 | 0.9963 | 0.0005 | 0.9421 | 0.0101 | 0.9351 | 0.0102 |
MA-2 | 0.8984 | 0.0060 | 0.9100 | 0.0086 | 0.9790 | 0.0029 | 0.9555 | 0.0058 |
MA-3 | 0.5498 | 0.0201 | 0.6151 | 0.0279 | 0.9068 | 0.0077 | 0.9176 | 0.0081 |
MA-4 | 0.2961 | 0.0326 | 0.3584 | 0.0463 | 0.7054 | 0.0191 | 0.8086 | 0.0160 |
MB-1 | 0.4596 | 0.4900 | 0.6073 | 0.1061 | 0.4346 | 0.4464 | 0.4479 | 0.4680 |
MB-2 | 0.4600 | 0.4871 | 0.4405 | 0.5617 | 0.4345 | 0.4462 | 0.4481 | 0.4689 |
MB-3 | 0.4598 | 0.4947 | 0.4409 | 0.5656 | 0.4351 | 0.4474 | 0.4481 | 0.4716 |
MB-4 | 0.4598 | 0.4947 | 0.4409 | 0.5657 | 0.4349 | 0.4500 | 0.4481 | 0.4715 |
MC-1 | 0.8715 | 0.0059 | 0.8031 | 0.0145 | 0.9979 | 0.0002 | 0.9811 | 0.0021 |
MC-2 | 0.4780 | 0.0202 | 0.4832 | 0.0329 | 0.8782 | 0.0080 | 0.9446 | 0.0043 |
MC-3 | 0.2472 | 0.0323 | 0.2736 | 0.0502 | 0.6510 | 0.0201 | 0.8026 | 0.0122 |
MC-4 | 0.1311 | 0.0418 | 0.1644 | 0.0641 | 0.4218 | 0.0330 | 0.6209 | 0.0208 |
图5 MOS纳米线透射电镜图片及其反傅里叶变换图(a) MOS纳米线TEM照片及布拉格衍射图;(b) MOS纳米线局部放大照片; (c)~(e)由衍射斑得到的三种不同晶面条纹图
Fig.5 Transmission electron microscopy and the corresponding IFFT images of MOS nanowires(a) transmission electron microscopy and bragg diffraction pattern of MOS nanowires; (b) the partial enlargement image of (a); (c)—(e) the lattice stripe of three different crystal plane group
1 | 岳涛, 高世扬, 朱黎霞, 等. 纳米晶MgSO4·5Mg(OH)2·3H2O合成与表征[J]. 高等学校化学学报, 2002, 23(9): 1790-1791. |
Yue T, Gao S Y, Zhu L X, et al. Synthesis and characterization of nanocrystalline materials MgSO4·5Mg(OH)2·3H2O[J]. Chemical Research in Chinese Universities, 2002, 23(9): 1790-1791. | |
2 | Gao C H, Li X G, Feng L J, et al. Preparation and thermal decomposition of 5Mg(OH)2·MgSO4·2H2O nanowhiskers[J]. Chemical Engineering Journal, 2009, 150(2/3): 551-554. |
3 | Dinnebier R E, Pannach M, Freyer D. 3Mg(OH)2·MgSO4·8H2O: a metastable phase in the system Mg(OH)2-MgSO4-H2O[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2013, 639(10): 1827-1833. |
4 | Tang Z L, Zhu C L, Fan F Y, et al. Green synthesis of the excellent magnesium oxysulfate whiskers under controlled reaction conditions[J]. Materials Chemistry and Physics, 2017, 195: 143-148. |
5 | 朱黎霞, 岳涛, 高世扬, 等. Mg(OH)2·2MgSO4·2H2O晶体的水热生长过程[J]. 物理化学学报, 2003, 19(3): 212-215. |
Zhu L X, Yue T, Gao S Y, et al. Hydrothermal crystal growth of Mg(OH)2·2MgSO4·2H2O[J]. Acta Physico-Chimica Sinica, 2003, 19(3): 212-215. | |
6 | Chen X, Qiu T. Natural rubber composites reinforced with basic magnesium oxysulfate whiskers: processing and ultraviolet resistance/flame retardant properties[J]. Polymer Testing, 2020, 81: 106271. |
7 | Jiang Y Z, Li Y B, Han Y X, et al. Study of mechanical properties of magnesium oxysulfate whisker/ABS composites[J]. Advanced Materials Research, 2010, 92: 241-246. |
8 | Chu Y J, Wang A G, Zhu Y C, et al. Enhancing the performance of basic magnesium sulfate cement-based coral aggregate concrete through gradient composite design technology[J]. Composites Part B: Engineering, 2021, 227: 109382. |
9 | Guo T, Wang H F, Yang H J, et al. The mechanical properties of magnesium oxysulfate cement enhanced with 517 phase magnesium oxysulfate whiskers[J]. Construction and Building Materials, 2017, 150: 844-850. |
10 | Zhang J J, Wu B, Tao S, et al. Hydrothermal synthesis of magnesium hydroxide sulfate hydrate whisker flame retardant[J]. Applied Mechanics and Materials, 2012, 174/175/176/177: 1034-1037. |
11 | Kim E S, Kim Y C, Park J, et al. Mechanical properties and flame retardancy of surface modified magnesium oxysulfate (5Mg(OH)2·MgSO4·3H2O) whisker for polypropylene composites[J]. Journal of Materiomics, 2018, 4(2): 149-156. |
12 | Wang J, Dai Y H, Yu Y, et al. Alignment controllable synthesis of MOF films: from Cu(OH)2 nanowire array to highly oriented Cu-MOF film[J]. Journal of Solid State Chemistry, 2022, 306: 122800. |
13 | Li D R, Xing H, Cao H Q, et al. Single nanowire integrated microfiber devices[J]. Results in Optics, 2021, 5: 100199. |
14 | Tan Y M, Kang Y T, Wang W W, et al. Chitosan modified inorganic nanowires membranes for ultra-fast and efficient removal of Congo red[J]. Applied Surface Science, 2021, 569: 150970. |
15 | 肖剑飞, 乃学瑛, 苟生莲, 等. 邻苯二甲酸氢钾在制备碱式硫酸镁纳米线过程中的机理研究[J]. 无机材料学报, 2019, 34(11): 1181-1186. |
Xiao J F, Nai X Y, Gou S L, et al. Mechanism of potassium acid phthalate in stimulating formation of magnesium hydroxide sulfate hydrate nanowires[J]. Journal of Inorganic Materials, 2019, 34(11): 1181-1186. | |
16 | Sun X, Shi W, Xiang L, et al. Controllable synthesis of magnesium oxysulfate nanowires with different morphologies[J]. Nanoscale Research Letters, 2008, 3(10): 386-389. |
17 | Li J, Xiang L, Jin Y. Hydrothermal formation of magnesium oxysulfate whiskers in the presence of ethylenediaminetetraacetic acid[J]. Journal of Materials Science, 2006, 41(5): 1345-1348. |
18 | Kang K H, Lee D K. Synthesis of magnesium oxysulfate whiskers using triethanolamine as a morphology control agent[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 2580-2583. |
19 | Zhou Z Z, Deng Y L. Solution synthesis of magnesium hydroxide sulfate hydrate nanobelts using sparingly soluble carbonate salts as supersaturation control agents[J]. Journal of Colloid and Interface Science, 2007, 316(1): 183-188. |
20 | 范天博, 周永红, 刘露萍, 等. 碱式硫酸镁晶须的生长机理分析[J]. 无机盐工业, 2017, 49(7): 20-23. |
Fan T B, Zhou Y H, Liu L P, et al. Analysis on growth mechanism of magnesium hydroxide sulfate hydrate whiskers[J]. Inorganic Chemicals Industry, 2017, 49(7): 20-23. | |
21 | 高传慧, 许军, 王传兴, 等. 碱式硫酸镁晶须的一步法水热合成及生长机理[J]. 硅酸盐学报, 2011, 39(5): 773-778. |
Gao C H, Xu J, Wang C X, et al. Hydrothermal synthesis and growth mechanism of magnesium hydroxide sulfate hydrate whiskers by the one-step procedure[J]. Journal of the Chinese Ceramic Society, 2011, 39(5): 773-778. | |
22 | Yan X X, Xu D L, Xue D F. SO4 2- ions direct the one-dimensional growth of 5Mg(OH)2·MgSO4·2H2O[J]. Acta Materialia, 2007, 55(17): 5747-5757. |
23 | 张少博, 方莉, 高雪焘, 等. 碱式硫酸镁晶须的可控制备及不同离子的影响机制[J]. 化工学报, 2021, 72(6): 3031-3040. |
Zhang S B, Fang L, Gao X T, et al. Controllable synthesis of magnesium hydroxide sulfate hydrate whiskers and effects of different ions[J]. CIESC Journal, 2021, 72(6): 3031-3040. | |
24 | 刘峰, 向兰, 金涌. 水热法制备碱式硫酸镁晶须的过程机制[J]. 无机材料学报, 2004, 19(4): 784-788. |
Liu F, Xiang L, Jin Y. Hydrothermal synthesis process of magnesium oxysulfate whiskers[J]. Journal of Inorganic Materials, 2004, 19(4): 784-788. | |
25 | 高传慧, 王传兴, 许军, 等. 碱式硫酸镁晶须水热过程结晶动力学研究[J]. 无机化学学报, 2012, 28(10): 2198-2204. |
Gao C H, Wang C X, Xu J, et al. Hydrothermal crystallization kinetics of magnesium hydroxide sulfate hydrate whiskers[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(10): 2198-2204. | |
26 | Nielsen A E. Kinetics of Precipitation[M]. Oxford: Pergamon Press, 1964: 29-65. |
27 | Sugimoto T, Kojima T. Formation mechanism of amorphous TiO2 spheres in organic solvents 2. Kinetics of precipitation[J]. The Journal of Physical Chemistry C, 2008, 112(47): 18437-18444. |
28 | Topuz B, Şimşek D, Çiftçioğlu M. Preparation of monodisperse silica spheres and determination of their densification behaviour[J]. Ceramics International, 2015, 41(1): 43-52. |
29 | 苟国敬, 高世扬, 夏树屏, 等. 硼酸盐化学(ⅩⅩⅩⅤ ): MgO·3B2O3-18%MgSO4-H2O过饱和溶液0℃结晶动力学研究[J]. 盐湖研究, 2003, 11(1): 52-58. |
Gou G J, Gao S Y, Xia S P, et al. Chemistry of borate in salt lake brines(ⅩⅩⅩⅤ ): Study on crystallization kinetics of MgO·3B2O3-18%MgSO4-H2O supersaturated solution at 0℃[J]. Journal of Salt Lake Research, 2003, 11(1): 52-58. | |
30 | 彭姣玉, 张波, 陈婧, 等. 大柴旦富硼浓缩盐卤中硼酸镁盐稀释结晶动力学[J]. 无机化学学报, 2019, 35(10): 1821-1833. |
Peng J Y, Zhang B, Chen J, et al. Crystallization kinetics of Mg-borates precipitating from diluted boron-containing brine of da Qaidam saline lake[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(10): 1821-1833. | |
31 | 马玉涛, 夏树屏, 高世扬. 硼酸盐化学(ⅩⅩⅩⅠ): MgO·2B2O3-18%MgSO4-H2O过饱和溶液结晶动力学研究[J]. 高等学校化学学报, 2002, 23(1): 18-21. |
Ma Y T, Xia S P, Gao S Y. Chemistry of borate(ⅩⅩⅩⅠ): Crystallization kinetics of Mg-borates from MgO·2B2O3-18%MgSO4-H2O supersaturated solution[J]. Chemical Research in Chinese Universities, 2002, 23(1): 18-21. | |
32 | 李小平, 刘志宏, 高世扬, 等. 硼酸溶液中氯柱硼镁石的溶解及相转化动力学[J]. 物理化学学报, 2003, 19(7): 584-587. |
Li X P, Liu Z H, Gao S Y, et al. Kinetics of dissolution and transformation of chloropinnoite in H3BO3 aqueous solution[J]. Acta Physico-Chimica Sinica, 2003, 19(7): 584-587. | |
33 | 高世扬, 陈学安, 夏树屏. 盐卤硼酸盐化学 (): 2MgO·2B2O3·MgCl2·14H2O结晶动力学研究[J]. 化学学报, 1990, 48(11): 1049-1056. |
Cao S Y, Chen X A, Xia S P. Chemistry of borate in salt lake brine (): Study on crystallization kinetics of 2 MgO·2 B2O3·MgCl2·14H2O[J]. Acta Chimica Sinica, 1990, 48(11): 1049-1056. | |
34 | 高世扬, 宋彭生, 夏树屏 等. 盐湖化学: 新类型硼锂盐湖[M]. 北京: 科学出版社, 2007: 286. |
Gao S Y, Song P S, Xia S P, et al. Salt Lake Chemistry: A New Type Salt Lake of Borate and Lithium[M]. Beijing: Science Press, 2007: 286. | |
35 | 高世扬, 黄发清, 夏树屏. 盐卤硼酸盐化学(ⅩⅧ): MgO·3B2O3-MgCl2-H2O浓溶液中六硼酸镁盐结晶动力学[J]. 盐湖研究, 1993, 1(1): 38-48. |
Gao S Y, Huang F Q, XIA S P. Chemistry of borate in salt lake brine (ⅩⅧ): Study on crystallization kinetics of Mg-hexaborates from MgO·3B2O3-MgCl2-H2O concentrated solutions[J]. Journal of Salt Lake Research, 1993, 1(1): 38-48. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[5] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[8] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[9] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[10] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[11] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[12] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[13] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[14] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[15] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 256
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||