化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4191-4200.DOI: 10.11949/0438-1157.20230757
收稿日期:
2023-07-20
修回日期:
2023-10-04
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
周光正,王学重
作者简介:
周光正(1981—),男,博士,副研究员,zhouguangzheng@bipt.edu.cn
基金资助:
Guangzheng ZHOU(), Xuezhong WANG(), Haoyu ZHOU
Received:
2023-07-20
Revised:
2023-10-04
Online:
2023-10-25
Published:
2023-12-22
Contact:
Guangzheng ZHOU, Xuezhong WANG
摘要:
晶体形式的蛋白质药物在活性组分可控释放、生化稳定性等方面有较大优势,但蛋白质结晶的优化控制很复杂。通过基于晶体形貌的群体平衡模型与多目标遗传算法的耦合求解,研究了鸡蛋清溶酶菌冷却结晶的多目标优化问题,目标包括晶体尺寸均一、晶体形状相同、产品收率最大。冷却策略采用十个区间依次降温,但各区间降温速率独立线性变化。Pareto解是三个目标相互平衡的结果,收率目标与形状目标朝极值演化的趋势一致,而晶体尺寸分布目标与上述两者相反。随着不同Pareto解的收率增加,相应结晶过程的各段降温速率总体增加,平均过饱和度也变大且普遍高于常见小分子结晶的过饱和度。由于过饱和度对晶体两个法向距离的增长速度具有不同影响,导致更高收率的Pareto解对应的最终平均晶体尺寸更大,且形状更扁平。
中图分类号:
周光正, 王学重, 周浩宇. 溶酶菌蛋白质结晶的多目标优化与模拟[J]. 化工学报, 2023, 74(10): 4191-4200.
Guangzheng ZHOU, Xuezhong WANG, Haoyu ZHOU. Multi-objective optimization and simulation of lysozyme protein crystallization[J]. CIESC Journal, 2023, 74(10): 4191-4200.
1 | Schwaminger S P, Zimmermann I, Berensmeier S. Current research approaches in downstream processing of pharmaceutically relevant proteins[J]. Current Opinion in Biotechnology, 2022, 77: 102768. |
2 | Walla B, Bischoff D, Corona Viramontes I, et al. Recent advances in the monitoring of protein crystallization processes in downstream processing[J]. Crystals, 2023, 13(5): 773. |
3 | 赵绍磊, 王耀国, 张腾, 等. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474. |
Zhao S L, Wang Y G, Zhang T, et al. Advanced process control of pharmaceutical crystallization[J]. CIESC Journal, 2020, 71(2): 459-474. | |
4 | 张波. 促进蛋白质结晶的方法研究进展[J]. 材料导报, 2023, 37(19): 22020032. |
Zhang B. Technological advances in promoting protein crystallization[J]. Materials Reports, 2023, 37(19): 22020032. | |
5 | Orehek J, Teslić D, Likozar B. Continuous crystallization processes in pharmaceutical manufacturing: a review[J]. Organic Process Research & Development, 2021, 25(1): 16-42. |
6 | Kumar S, Ramkrishna D. On the solution of population balance equations by discretization(Ⅰ): A fixed pivot technique[J]. Chemical Engineering Science, 1996, 51(8): 1311-1332. |
7 | Yang L, Zhang Y, Liu P, et al. Kinetics and population balance modeling of antisolvent crystallization of polymorphic indomethacin[J]. Chemical Engineering Journal, 2022, 428: 132591. |
8 | 曲晏利, 姜跃佳, 程景才, 等. 反应与溶析结晶过程强化及数值模拟研究进展[J]. 化工进展, 2020, 39(12): 4970-4982. |
Qu Y L, Jiang Y J, Cheng J C, et al. Advances in process intensification and numerical simulation of reactive and antisolvent crystallizations[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4970-4982. | |
9 | Ma D L, Tafti D K, Braatz R D. High-resolution simulation of multidimensional crystal growth[J]. Industrial & Engineering Chemistry Research, 2002, 41(25): 6217-6223. |
10 | Szilágyi B, Eren A, Quon J L, et al. Monitoring and digital design of the cooling crystallization of a high-aspect ratio anticancer drug using a two-dimensional population balance model[J]. Chemical Engineering Science, 2022, 257: 117700. |
11 | Ma C Y, Wang X Z, Roberts K J. Morphological population balance for modeling crystal growth in face directions[J]. AIChE Journal, 2008, 54(1): 209-222. |
12 | Shu Y D, Liu J J, Zhang Y, et al. Considering nucleation, breakage and aggregation in morphological population balance models for crystallization processes[J]. Computers & Chemical Engineering, 2020, 136: 106781. |
13 | Szilágyi B, Borsos Á, Pal K, et al. Experimental implementation of a quality-by-control (QbC) framework using a mechanistic PBM-based nonlinear model predictive control involving chord length distribution measurement for the batch cooling crystallization of L-ascorbic acid[J]. Chemical Engineering Science, 2019, 195: 335-346. |
14 | Szilagyi B, Eren A, Quon J L, et al. Application of model-free and model-based quality-by-control (QbC) for the efficient design of pharmaceutical crystallization processes[J]. Crystal Growth & Design, 2020, 20(6): 3979-3996. |
15 | Cao Y K, Acevedo D, Nagy Z K, et al. Real-time feasible multi-objective optimization based nonlinear model predictive control of particle size and shape in a batch crystallization process[J]. Control Engineering Practice, 2017, 69: 1-8. |
16 | Ma D L, Tafti D K, Braatz R D. Optimal control and simulation of multidimensional crystallization processes[J]. Computers & Chemical Engineering, 2002, 26(7/8): 1103-1116. |
17 | Ma C Y, Roberts K J. Morphological population balance modelling of the effect of crystallisation environment on the evolution of crystal size and shape of para-aminobenzoic acid[J]. Computers & Chemical Engineering, 2019, 126: 356-370. |
18 | Ma C Y, Wang X Z. Closed-loop control of crystal shape in cooling crystallization of L-glutamic acid[J]. Journal of Process Control, 2012, 22(1): 72-81. |
19 | Liu J J, Ma C Y, Hu Y D, et al. Effect of seed loading and cooling rate on crystal size and shape distributions in protein crystallization—a study using morphological population balance simulation[J]. Computers & Chemical Engineering, 2010, 34(12): 1945-1952. |
20 | Liu J J, Ma C Y, Hu Y D, et al. Modelling protein crystallisation using morphological population balance models[J]. Chemical Engineering Research and Design, 2010, 88(4): 437-446. |
21 | Liu J J, Hu Y D, Wang X Z. Optimization and control of crystal shape and size in protein crystallization process[J]. Computers & Chemical Engineering, 2013, 57: 133-140. |
22 | Kwon J S I, Nayhouse M, Christofides P D, et al. Modeling and control of protein crystal shape and size in batch crystallization[J]. AIChE Journal, 2013, 59(7): 2317-2327. |
23 | Kwon J S I, Nayhouse M, Christofides P D, et al. Modeling and control of shape distribution of protein crystal aggregates[J]. Chemical Engineering Science, 2013, 104: 484-497. |
24 | Kwon J S I, Nayhouse M, Orkoulas G, et al. Crystal shape and size control using a plug flow crystallization configuration[J]. Chemical Engineering Science, 2014, 119: 30-39. |
25 | Zhou H Y, Zhou G Z, Wang X Z. Multi-objective optimization of protein cooling crystallization with morphological population balance models[J]. Journal of Crystal Growth, 2022, 588: 126664. |
26 | Hojjati H, Rohani S. Cooling and seeding effect on supersaturation and final crystal size distribution (CSD) of ammonium sulphate in a batch crystallizer[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(9): 949-957. |
27 | Simone E, Zhang W, Nagy Z K. Analysis of the crystallization process of a biopharmaceutical compound in the presence of impurities using process analytical technology (PAT) tools[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(5): 1461-1470. |
28 | Zhang D J, Liu L D, Xu S J, et al. Optimization of cooling strategy and seeding by FBRM analysis of batch crystallization[J]. Journal of Crystal Growth, 2018, 486: 1-9. |
29 | Sarkar D, Rohani S, Jutan A. Multi-objective optimization of seeded batch crystallization processes[J]. Chemical Engineering Science, 2006, 61(16): 5282-5295. |
30 | Hemalatha K, Rani K Y. Multiobjective optimization of unseeded and seeded batch cooling crystallization processes[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 6012-6021. |
31 | Nadarajah A, Pusey M L. Growth mechanism and morphology of tetragonal lysozyme crystals[J]. Acta Crystallographica Section D: Biological Crystallography, 1996, 52(5): 983-996. |
32 | Forsythe E, Ewing F, Pusey M. Studies on tetragonal lysozyme crystal growth rates[J]. Acta Crystallographica Section D: Biological Crystallography, 1994, 50(4): 614-619. |
33 | Gunawan R, Fusman I, Braatz R D. High resolution algorithms for multidimensional population balance equations[J]. AIChE Journal, 2004, 50(11): 2738-2749. |
34 | Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80: 8091-8126. |
35 | Whitley D. A genetic algorithm tutorial[J]. Statistics and Computing, 1994, 4: 65-85. |
36 | Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
37 | Rangaiah G P, Feng Z M, Hoadley A F. Multi-objective optimization applications in chemical process engineering: tutorial and review[J]. Processes, 2020, 8(5): 508. |
38 | Gunantara N. A review of multi-objective optimization: methods and its applications[J]. Cogent Engineering, 2018, 5(1): 1502242. |
39 | Li J H, Huang W L. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 41-60. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[5] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[6] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[7] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[13] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[14] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[15] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||