化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1113-1125.DOI: 10.11949/0438-1157.20221347
王思琪1(), 顾天宇1, 陈献富1, 王通2, 李佳2, 柯威2, 李小锋3, 范益群1()
收稿日期:
2022-10-12
修回日期:
2023-01-26
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
范益群
作者简介:
王思琪(1998—),女,硕士研究生,wsq1365180706@163.com
基金资助:
Siqi WANG1(), Tianyu GU1, Xianfu CHEN1, Tong WANG2, Jia LI2, Wei KE2, Xiaofeng LI3, Yiqun FAN1()
Received:
2022-10-12
Revised:
2023-01-26
Online:
2023-03-05
Published:
2023-04-19
Contact:
Yiqun FAN
摘要:
杜仲是我国特有的珍稀中药材树种且资源丰富,其树叶富含绿原酸和黄酮类化合物等活性物质。然而,杜仲叶提取液中杜仲胶、蛋白、多糖等杂质含量较高,缺乏活性物质的高效分离技术。陶瓷膜具有分离效率高、抗污染性能好等优势,已在植物提取液的澄清过程中广泛应用。开发杜仲叶提取液的陶瓷膜法高效澄清技术具有重要应用价值。本文从膜材料和膜过程两个层面展开研究,对陶瓷膜孔径进行了优选,系统考察了操作压力、膜面流速与温度对陶瓷膜澄清过程的影响,并结合Hermia模型对膜污染机制进行了分析。结果表明,平均孔径为100 nm的陶瓷微滤膜具有较高的浊度去除率、活性成分透过率和渗透通量,适合杜仲叶提取液的澄清过程。在优化的操作条件下,陶瓷微滤膜的稳定通量约为58 L·m-2·h-1,绿原酸与黄酮的总透过率为75.3%,浊度截留率接近100%,清洗后膜通量恢复率达85%以上。陶瓷膜分离技术在杜仲叶提取液澄清过程中展现了良好的应用前景。
中图分类号:
王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125.
Siqi WANG, Tianyu GU, Xianfu CHEN, Tong WANG, Jia LI, Wei KE, Xiaofeng LI, Yiqun FAN. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract[J]. CIESC Journal, 2023, 74(3): 1113-1125.
仪器 | 型号 | 生产厂家 |
---|---|---|
紫外可见光分光光度计 | UV-2600i | 岛津仪器(苏州)有限公司 |
液相色谱仪 | LC-20AT | 日本岛津公司 |
浊度计 | WZS-188 | 上海仪电科学仪器股份 有限公司 |
凝胶色谱仪 | Waters1515 | Waters(美国) |
冷场发射扫描电镜 | S-4800 | Hitachi(日本) |
Zeta电位分析仪 | Nano-ZS90 | Malvern(英国) |
白光干涉仪 | VK-X1000 | Keyence(日本) |
表1 实验仪器
Table 1 Experimental materials and instruments
仪器 | 型号 | 生产厂家 |
---|---|---|
紫外可见光分光光度计 | UV-2600i | 岛津仪器(苏州)有限公司 |
液相色谱仪 | LC-20AT | 日本岛津公司 |
浊度计 | WZS-188 | 上海仪电科学仪器股份 有限公司 |
凝胶色谱仪 | Waters1515 | Waters(美国) |
冷场发射扫描电镜 | S-4800 | Hitachi(日本) |
Zeta电位分析仪 | Nano-ZS90 | Malvern(英国) |
白光干涉仪 | VK-X1000 | Keyence(日本) |
污染模型 | n | 方程 |
---|---|---|
完全孔阻塞 | 2 | |
标准孔阻塞 | 1.5 | |
中间孔阻塞 | 1 | |
滤饼层阻塞 | 0 |
表2 膜污染孔阻塞模型方程
Table 2 Pore blocking model equations
污染模型 | n | 方程 |
---|---|---|
完全孔阻塞 | 2 | |
标准孔阻塞 | 1.5 | |
中间孔阻塞 | 1 | |
滤饼层阻塞 | 0 |
Fouling model | 0.10 MPa | 0.20 MPa | 0.25 MPa | 0.30 MPa | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9586 | 7.280×10-2 | 0.9827 | 3.280×10-1 | 0.9630 | 3.546×10-1 | 0.9989 | 4.784×10-1 |
standard blocking | 0.9645 | 6.167×10-3 | 0.5289 | 8.237×10-3 | 0.6802 | 1.067×10-3 | 0.6641 | 1.353×10-2 |
intermediate blocking | 0.9963 | 9.040×10-4 | 0.9934 | 2.969×10-3 | 0.9766 | 2.991×10-3 | 0.9994 | 5.135×10-3 |
cake layer | 0.8892 | 1.203×10-5 | 0.8770 | 2.512×10-5 | 0.9258 | 1.524×10-5 | 0.4676 | 4.495×10-5 |
表3 不同操作压力下的污染模型相关系数R2和污染指数k
Table 3 Correlation coefficient R2 and pollution index k of pollution model at different operating pressure
Fouling model | 0.10 MPa | 0.20 MPa | 0.25 MPa | 0.30 MPa | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9586 | 7.280×10-2 | 0.9827 | 3.280×10-1 | 0.9630 | 3.546×10-1 | 0.9989 | 4.784×10-1 |
standard blocking | 0.9645 | 6.167×10-3 | 0.5289 | 8.237×10-3 | 0.6802 | 1.067×10-3 | 0.6641 | 1.353×10-2 |
intermediate blocking | 0.9963 | 9.040×10-4 | 0.9934 | 2.969×10-3 | 0.9766 | 2.991×10-3 | 0.9994 | 5.135×10-3 |
cake layer | 0.8892 | 1.203×10-5 | 0.8770 | 2.512×10-5 | 0.9258 | 1.524×10-5 | 0.4676 | 4.495×10-5 |
Fouling models | 2 m·s-1 | 3 m·s-1 | 4 m·s-1 | 5 m·s-1 | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9480 | 2.016×10-1 | 0.9827 | 3.280×10-1 | 0.9621 | 3.816×10-2 | 0.8065 | 9.167×10-2 |
standard blocking | 0.8646 | 1.215×10-2 | 0.5289 | 8.237×10-3 | 0.9754 | 2.416×10-3 | 0.5496 | 2.643×10-3 |
intermediate blocking | 0.9875 | 2.990×10-3 | 0.9934 | 2.969×10-3 | 0.9603 | 2.947×10-4 | 0.9052 | 5.706×10-4 |
cake layer | 0.9528 | 2.370×10-5 | 0.8770 | 2.012×10-5 | 0.9628 | 1.767×10-6 | 0.9747 | 3.427×10-6 |
表4 不同膜面流速下的污染模型相关系数 R2 和污染指数 k
Table 4 Correlation coefficient R2 and pollution index k of pollution model at different membrane surface velocities
Fouling models | 2 m·s-1 | 3 m·s-1 | 4 m·s-1 | 5 m·s-1 | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9480 | 2.016×10-1 | 0.9827 | 3.280×10-1 | 0.9621 | 3.816×10-2 | 0.8065 | 9.167×10-2 |
standard blocking | 0.8646 | 1.215×10-2 | 0.5289 | 8.237×10-3 | 0.9754 | 2.416×10-3 | 0.5496 | 2.643×10-3 |
intermediate blocking | 0.9875 | 2.990×10-3 | 0.9934 | 2.969×10-3 | 0.9603 | 2.947×10-4 | 0.9052 | 5.706×10-4 |
cake layer | 0.9528 | 2.370×10-5 | 0.8770 | 2.012×10-5 | 0.9628 | 1.767×10-6 | 0.9747 | 3.427×10-6 |
Fouling models | 20˚C | 30˚C | 40˚C | 50˚C | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9401 | 2.629×10-1 | 0.9827 | 3.280×10-1 | 0.9005 | 6.547×10-2 | 0.7565 | 5.062×10-2 |
standard blocking | 0.6005 | 3.430×10-6 | 0.5289 | 8.237×10-3 | 0.8977 | 3.465×10-3 | 0.8471 | 3.068×10-3 |
intermediate blocking | 0.9728 | 3.033×10-3 | 0.9934 | 2.969×10-3 | 0.9727 | 4.133×10-4 | 0.8922 | 2.543×10-4 |
cake layer | 0.8452 | 2.640×10-5 | 0.8770 | 2.512×10-5 | 0.8929 | 2.880×10-6 | 0.8985 | 1.070×10-6 |
表5 不同温度下的污染模型相关系数 R2 和污染指数 k
Table 5 Correlation coefficient R2 and pollution index k of pollution model at different temperatures
Fouling models | 20˚C | 30˚C | 40˚C | 50˚C | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9401 | 2.629×10-1 | 0.9827 | 3.280×10-1 | 0.9005 | 6.547×10-2 | 0.7565 | 5.062×10-2 |
standard blocking | 0.6005 | 3.430×10-6 | 0.5289 | 8.237×10-3 | 0.8977 | 3.465×10-3 | 0.8471 | 3.068×10-3 |
intermediate blocking | 0.9728 | 3.033×10-3 | 0.9934 | 2.969×10-3 | 0.9727 | 4.133×10-4 | 0.8922 | 2.543×10-4 |
cake layer | 0.8452 | 2.640×10-5 | 0.8770 | 2.512×10-5 | 0.8929 | 2.880×10-6 | 0.8985 | 1.070×10-6 |
1 | Huang H J, Ramaswamy S, Tschirner U W, et al. A review of separation technologies in current and future biorefineries[J]. Separation and Purification Technology, 2008, 62(1): 1-21. |
2 | 国家药典委员会. 中华人民共和国药典-二部: 2020年版[M]. 北京: 中国医药科技出版社, 2020. |
State Pharmacopoeia Committee. People's Republic of China (PRC) Pharmacopoeia—part Ⅱ: 2020 edition[M]. Beijing: China Pharmaceutical Science and Technology Press, 2020: 172. | |
3 | Huang L C, Lyu Q, Zheng W Y, et al. Traditional application and modern pharmacological research of Eucommia ulmoides Oliv[J]. Chinese Medicine, 2021, 16(1): 73. |
4 | Pandey K B, Rizvi S I. Plant polyphenols as dietary antioxidants in human health and disease[J]. Oxidative Medicine and Cellular Longevity, 2009, 2(5): 270-278. |
5 | Zhang Q, Su Y Q, Zhang J F. Seasonal difference in antioxidant capacity and active compounds contents of Eucommia ulmoides oliver leaf[J]. Molecules, 2013, 18(2): 1857-1868. |
6 | Xu D H, Yu C L, Wang J J, et al. Ultrafiltration strategy combined with nanoLC-MS/MS based proteomics for monitoring potential residual proteins in TCMIs[J]. Journal of Chromatography B, 2021, 1178: 122818. |
7 | Shao F L, Xu J T, Zhang J Y, et al. Study on the influencing factors of natural pectin's flocculation: their sources, modification, and optimization[J]. Water Environment Research, 2021, 93(10): 2261-2273. |
8 | 郭立玮, 邢卫红, 朱华旭, 等. 中药膜技术的"绿色制造"特征、国家战略需求及其关键科学问题与应对策略[J]. 中草药, 2017, 48(16): 3267-3279. |
Guo L W, Xing W H, Zhu H X, et al. "Green manufacture" characteristics and national strategic demand of Chinese material medica membrane technology and its key scientific problems and countermeasures[J]. Chinese Traditional and Herbal Drugs, 2017, 48(16): 3267-3279. | |
9 | Jha A K, Sit N. Extraction of bioactive compounds from plant materials using combination of various novel methods: a review[J]. Trends in Food Science & Technology, 2022, 119: 579-591. |
10 | Tchabo W, Ma Y K, Engmann F N, et al. Ultrasound-assisted enzymatic extraction (UAEE) of phytochemical compounds from mulberry (Morus nigra) must and optimization study using response surface methodology[J]. Industrial Crops and Products, 2015, 63: 214-225. |
11 | Jiang T, Ghosh R, Charcosset C. Extraction, purification and applications of curcumin from plant materials—a comprehensive review[J]. Trends in Food Science & Technology, 2021, 112: 419-430. |
12 | Horosanskaia E, Yuan L N, Seidel-Morgenstern A, et al. Purification of curcumin from ternary extract—similar mixtures of curcuminoids in a single crystallization step[J]. Crystals, 2020, 10(3): 206. |
13 | Sjölin M, Thuvander J, Wallberg O, et al. Purification of sucrose in sugar beet molasses by utilizing ceramic nanofiltration and ultrafiltration membranes[J]. Membranes, 2019, 10(1): 5. |
14 | Castro-Muñoz R, Yáñez-Fernández J, Fíla V. Phenolic compounds recovered from agro-food by-products using membrane technologies: an overview[J]. Food Chemistry, 2016, 213: 753-762. |
15 | Martín J, Díaz-Montaña E J, Asuero A G. Recovery of anthocyanins using membrane technologies: a review[J]. Critical Reviews in Analytical Chemistry, 2018, 48(3): 143-175. |
16 | Wang K, Li W X, Fan Y Q, et al. Integrated membrane process for the purification of lactic acid from a fermentation broth neutralized with sodium hydroxide[J]. Industrial & Engineering Chemistry Research, 2013, 52(6): 2412-2417. |
17 | Laorko A, Li Z Y, Tongchitpakdee S, et al. Effect of membrane property and operating conditions on phytochemical properties and permeate flux during clarification of pineapple juice[J]. Journal of Food Engineering, 2010, 100(3): 514-521. |
18 | Zhu Z Z, Guan Q Y, Koubaa M, et al. Preparation of highly clarified anthocyanin-enriched purple sweet potato juices by membrane filtration and optimization of their sensorial properties[J]. Journal of Food Processing and Preservation, 2017, 41(3): e12929. |
19 | Castro-Muñoz R, Yáñez-Fernández J. Valorization of Nixtamalization wastewaters (Nejayote) by integrated membrane process[J]. Food and Bioproducts Processing, 2015, 95: 7-18. |
20 | Russo C. A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW)[J]. Journal of Membrane Science, 2007, 288(1/2): 239-246. |
21 | Urošević T, Povrenović D, Vukosavljević P, et al. Recent developments in microfiltration and ultrafiltration of fruit juices[J]. Food and Bioproducts Processing, 2017, 106: 147-161. |
22 | 杨祖金, 江燕斌, 葛发欢, 等. 超滤膜技术分离杜仲叶绿原酸的研究[J]. 中药材, 2008, 31(4): 585-588. |
Yang Z J, Jiang Y B, Ge F H, et al. Study on isolation of chlorogenic acid from Eucommia ulmoides leaves by ultrafiltration technique[J]. Journal of Chinese Medicinal Materials, 2008, 31(4): 585-588. | |
23 | Lu Y W, Chen T, Chen X F, et al. Fabrication of TiO2-doped ZrO2 nanofiltration membranes by using a modified colloidal sol-gel process and its application in simulative radioactive effluent[J]. Journal of Membrane Science, 2016, 514: 476-486. |
24 | Zou D, Xu J R, Chen X F, et al. A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment[J]. Separation and Purification Technology, 2019, 219: 127-136. |
25 | 钟文蔚, 郑东阳, 邹洪荟, 等. 基于中药液、固体物料指标成分含量相关性的膜工艺评估方法创新研究: 以杜仲叶水提液为例[J]. 中草药, 2021, 52(11): 3234-3238. |
Zhong W W, Zheng D Y, Zou H H, et al. A novel approach for evaluating the concentrations of indicative components in liquid and solid in the pharmaceutical process of TCM manufacturing using membrane based clarification—example given in the water extracts of Eucommiae Folium[J]. Chinese Traditional and Herbal Drugs, 2021, 52(11): 3234-3238. | |
26 | Field R W, Wu D, Howell J A, et al. Critical flux concept for microfiltration fouling[J]. Journal of Membrane Science, 1995, 100(3): 259-272. |
27 | Lu D W, Zhang T, Ma J. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets[J]. Environmental Science & Technology, 2015, 49(7): 4235-4244. |
28 | Sayehi M, Sahnoun R D, Fakhfakh S, et al. Effect of elaboration parameters of a membrane ceramic on the filtration process efficacy[J]. Ceramics International, 2018, 44(5): 5202-5208. |
29 | Chen X F, Qi T, Zhang Y, et al. Facile pore size tuning and characterization of nanoporous ceramic membranes for the purification of polysaccharide[J]. Journal of Membrane Science, 2020, 597: 117631. |
30 | Akamatsu K, Kagami Y, Nakao S I. Effect of BSA and sodium alginate adsorption on decline of filtrate flux through polyethylene microfiltration membranes[J]. Journal of Membrane Science, 2020, 594: 117469. |
31 | Marshall A D, Munro P A, Trägårdh G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: a literature review[J]. Desalination, 1993, 91(1): 65-108. |
32 | Vincent Vela M C, Álvarez Blanco S, Lora García J, et al. Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG[J]. Chemical Engineering Journal, 2009, 149(1/2/3): 232-241. |
33 | Corbatón-Báguena M J, Álvarez-Blanco S, Vincent-Vela M C. Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions[J]. Desalination, 2015, 360: 87-96. |
34 | 滕达, 李铁林, 李昂, 等. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71(S1): 261-271. |
Teng D, Li T L, Li A, et al. Experimental analysis of low pressure water permeability of single channel ceramic membrane tube[J]. CIESC Journal, 2020, 71(S1): 261-271. | |
35 | Cui Z L, Peng W B, Fan Y Q, et al. Effect of cross-flow velocity on the critical flux of ceramic membrane filtration as a pre-treatment for seawater desalination[J]. Chinese Journal of Chemical Engineering, 2013, 21(4): 341-347. |
36 | Niu B H, Yang L, Meng S J, et al. Time-dependent analysis of polysaccharide fouling by Hermia models: reveal the structure of fouling layer[J]. Separation and Purification Technology, 2022, 302: 122093. |
37 | Qi T, Chen X F, Shi W D, et al. Fouling behavior of nanoporous ceramic membranes in the filtration of oligosaccharides at different temperatures[J]. Separation and Purification Technology, 2021, 278: 119589. |
38 | France T C, Bot F, Kelly A L, et al. The influence of temperature on filtration performance and fouling during cold microfiltration of skim milk[J]. Separation and Purification Technology, 2021, 262: 118256. |
39 | Alper N, Onsekizoglu P, Acar J. Effects of various clarification treatments on phenolic compounds and organic acid compositions of pomegranate (Punica granatum L.) juice[J]. Journal of Food Processing and Preservation, 2011, 35(3): 313-319. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[12] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[13] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||