化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2814-2823.DOI: 10.11949/0438-1157.20230429
收稿日期:
2023-05-04
修回日期:
2023-07-05
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
甘云华
作者简介:
史方哲(2000—),男,硕士研究生,1016410630@qq.com
基金资助:
Received:
2023-05-04
Revised:
2023-07-05
Online:
2023-07-05
Published:
2023-08-31
Contact:
Yunhua GAN
摘要:
提出了一种简化的超薄热管三维瞬态模型,模拟热管由启动至稳定运行的过程,基于团队前期工作验证了模型的准确性,通过数值模拟研究了不同流道厚度、吸液芯类型及折弯段几何结构的热管,分析了各参数对蒸汽流动特性、温度分布特性及启动性能的影响,基于控制理论对不同结构热管的热响应特性进行了定量分析,最大均方根误差(RMSE)仅为0.385。研究表明:流道厚度过小将增大蒸汽流动阻力和能量损失,不同结构吸液芯主要通过蒸汽通道宽度差异影响蒸汽流动特性,流道厚度越小越易受折弯段折弯半径和折弯角度的影响。此外,流道厚度小于0.2 mm还将影响热管均温性,使气液循环受限,热管总热阻和启动时间主要受热负荷的影响。
中图分类号:
史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823.
Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe[J]. CIESC Journal, 2023, 74(7): 2814-2823.
参数 | 数值 |
---|---|
热管长度/mm | 115 |
热管宽度/mm | 7.7 |
热管壁厚/mm | 0.2 |
流道厚度/mm | 0.1~0.4 |
加热铜块尺寸/mm×mm | 7.7×15 |
冷却铜块尺寸/mm×mm | 7.7×40 |
冷却水流量/(L·h-1) | 20 |
表1 热管及加热冷凝模块尺寸
Table 1 Structural parameters of heat pipe and heating condensation module
参数 | 数值 |
---|---|
热管长度/mm | 115 |
热管宽度/mm | 7.7 |
热管壁厚/mm | 0.2 |
流道厚度/mm | 0.1~0.4 |
加热铜块尺寸/mm×mm | 7.7×15 |
冷却铜块尺寸/mm×mm | 7.7×40 |
冷却水流量/(L·h-1) | 20 |
名称 | 每毫米孔数 | 线径/mm | 宽度/mm | 孔隙率 | 渗透率/m2 |
---|---|---|---|---|---|
NSM | 6.02 | 0.04 | 2.6 | 0.801 | 1.709×10-10 |
TSM | 6.69 | 0.04 | 3.0 | 0.779 | 1.273×10-10 |
ESM | 7.36 | 0.04 | 3.4 | 0.757 | 9.652×10-11 |
表2 吸液芯结构参数
Table 2 Structural parameters of wick
名称 | 每毫米孔数 | 线径/mm | 宽度/mm | 孔隙率 | 渗透率/m2 |
---|---|---|---|---|---|
NSM | 6.02 | 0.04 | 2.6 | 0.801 | 1.709×10-10 |
TSM | 6.69 | 0.04 | 3.0 | 0.779 | 1.273×10-10 |
ESM | 7.36 | 0.04 | 3.4 | 0.757 | 9.652×10-11 |
传递函数 | hw/mm | Tct/℃ | RMSE | kct | tct/s |
---|---|---|---|---|---|
0.1 | 55.895 | 0.385 | 4.955 | 27.002 | |
0.2 | 48.160 | 0.376 | 4.566 | 31.579 | |
0.3 | 46.882 | 0.196 | 4.511 | 34.567 |
表3 UTHP启动控制理论参数计算值
Table 3 Calculation values of control theory parameter for UTHP startup
传递函数 | hw/mm | Tct/℃ | RMSE | kct | tct/s |
---|---|---|---|---|---|
0.1 | 55.895 | 0.385 | 4.955 | 27.002 | |
0.2 | 48.160 | 0.376 | 4.566 | 31.579 | |
0.3 | 46.882 | 0.196 | 4.511 | 34.567 |
1 | 姚寿广, 马哲树, 罗林, 等. 电子电器设备中高效热管散热技术的研究现状及发展[J]. 华东船舶工业学院学报(自然科学版), 2003, 17(4): 9-12. |
Yao S G, Ma Z S, Luo L, et al. Improvement of heat pipe technique for high heat flux electronics cooling[J]. Journal of East China Shipbuilding Institute (Natural Science Edition), 2003, 17(4): 9-12. | |
2 | 辛乃龙. 纯电动汽车锂离子动力电池组热特性分析及仿真研究[D]. 长春: 吉林大学, 2012. |
Xin N L. Thermal characteristic analysis and simulation research of lithium-ion power battery pack for pure electric vehicle[D]. Changchun: Jilin University, 2012. | |
3 | 高翔, 凌惠琴, 李明, 等. CPU散热技术的最新研究进展[J]. 上海交通大学学报, 2007, 41(S2): 48-52. |
Gao X, Ling H Q, Li M, et al. Recent advance in cooling techniques for CPU[J]. Journal of Shanghai Jiao Tong University, 2007, 41(S2): 48-52. | |
4 | Lv Y G, Zhang G P, Wang Q W, et al. Management technologies used for high heat flux automobiles and aircraft: a review[J]. Energies, 2022, 15(21): 8316. |
5 | 庄骏, 张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社, 2000. |
Zhuang J, Zhang H. Heat Pipe Technology and Engineering Application[M]. Beijing: Chemical Industry Press, 2000. | |
6 | 田晟, 肖佳将. 基于正交层次法的锂离子电池热管散热模组数值模拟分析[J]. 化工学报, 2020, 71(8): 3510-3517. |
Tian S, Xiao J J. Numerical simulation and analysis of lithium-ion battery heat pipe cooling module based on orthogonal analytic hierarchy process[J]. CIESC Journal, 2020, 71(8): 3510-3517. | |
7 | 朱玙灯, 付婷, 曾良才, 等. 超薄热管传热性能的数值模拟[J]. 机械制造, 2021, 59(6): 37-42. |
Zhu Y D, Fu T, Zeng L C, et al. Numerical simulation of heat transfer property of ultra-thin heat pipe[J]. Machinery, 2021, 59(6): 37-42. | |
8 | Zhou W J, Li Y, Chen Z S, et al. Design and experimental study on a new heat dissipation method for watch-phones[C]//Wen C, Yan Y. Advances in Heat Transfer and Thermal Engineering. Singapore: Springer, 2021: 621-625. |
9 | Tang H, Weng C X, Tang Y, et al. Effect of inclination angle on the thermal performance of an ultrathin heat pipe with multi-scale wick structure[J]. International Communications in Heat and Mass Transfer, 2020, 118: 104908. |
10 | Koito Y. Numerical analyses on heat transfer characteristics of ultra-thin heat pipes: fundamental studies with a three-dimensional thermal-fluid model[J]. Applied Thermal Engineering, 2019, 148: 430-437. |
11 | 唐恒. 丝网吸液芯超薄热管制造及其传热性能研究[D]. 广州: 华南理工大学, 2018. |
Tang H. Study on fabrication and heat transfer performance of ultra-thin heat pipe with copper mesh wick[D]. Guangzhou: South China University of Technology, 2018. | |
12 | 汤勇, 孙亚隆, 唐恒, 等. 柔性热管的研究现状与发展趋势[J]. 机械工程学报, 2022, 58(10): 265-279. |
Tang Y, Sun Y L, Tang H, et al. Development status and perspective trend of flexible heat pipe[J]. Journal of Mechanical Engineering, 2022, 58(10): 265-279. | |
13 | 陈恭. 气液共面结构超薄均热板设计制造及其性能研究[D]. 广州: 华南理工大学, 2021. |
Chen G. Design, manufacture and performance study of ultra-thin vapor chamber with gas-liquid coplanar structure[D]. Guangzhou: South China University of Technology, 2021. | |
14 | Dai X, Tang Y L, Liu T Q, et al. Experimental investigation on the thermal characteristics of ultra-thin flattened heat pipes with bending angles[J]. Applied Thermal Engineering, 2020, 172: 115150. |
15 | Murer S, Lybaert P, Gleton L, et al. Experimental and numerical analysis of the transient response of a miniature heat pipe[J]. Applied Thermal Engineering, 2005, 25(16): 2566-2577. |
16 | Cui Z, Jia L, Wang Z, et al. Thermal performance of an ultra-thin flat heat pipe with striped super-hydrophilic wick structure[J]. Applied Thermal Engineering, 2022, 208: 118249. |
17 | Kholi F K, Mucci A, Kallath H, et al. Experimental investigation of the effects of inclinations and wicks on the thermal behavior of heat pipes for improved thermal applications[J]. Case Studies in Thermal Engineering, 2021, 26: 100997. |
18 | Famouri M, Carbajal G, Li C. Transient analysis of heat transfer and fluid flow in a polymer-based micro flat heat pipe with hybrid wicks[J]. International Journal of Heat and Mass Transfer, 2014, 70: 545-555. |
19 | 杨露露, 徐洪波, 王惠惠, 等. 平板微热管阵列的研究现状与进展[J]. 制冷学报, 2020, 41(5): 1-11, 22. |
Yang L L, Xu H B, Wang H H, et al. Research status and progress of flat plate micro heat pipe array[J]. Journal of Refrigeration, 2020, 41(5): 1-11, 22. | |
20 | Chen P Z, Pan Z L. Heat transfer analysis of flat heat pipe with enhanced microchannel shape[J]. IEEE Access, 2021, 9: 120833-120843. |
21 | Plawsky J L, Fedorov A G, Garimella S V, et al. Nano- and microstructures for thin-film evaporation: a review[J]. Nanoscale and Microscale Thermophysical Engineering, 2014, 18(3): 251-269. |
22 | Singh S K, Sharma D. Review of pool and flow boiling heat transfer enhancement through surface modification[J]. International Journal of Heat and Mass Transfer, 2021, 181: 122020. |
23 | Alhuyi Nazari M, Ghasempour R, Ahmadi M H. A review on using nanofluids in heat pipes[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(6): 1847-1855. |
24 | Hassan H, Harmand S. Study of the parameters and characteristics of flat heat pipe with nanofluids subjected to periodic heat load on its performance[J]. International Journal of Thermal Sciences, 2015, 97: 126-142. |
25 | Kasaeian A, Daneshazarian R, Mahian O, et al. Nanofluid flow and heat transfer in porous media: a review of the latest developments[J]. International Journal of Heat and Mass Transfer, 2017, 107: 778-791. |
26 | Datta A, Sanyal D, Agrawal A, et al. A review of liquid flow and heat transfer in microchannels with emphasis to electronic cooling[J]. Sādhanā, 2019, 44(12): 1-32. |
27 | 甘云华, 黄昭惠, 梁嘉林, 等. 部分压扁热管等效导热模型特性研究[J]. 华南理工大学学报(自然科学版), 2021, 49(10): 123-132. |
Gan Y H, Huang Z H, Liang J L, et al. Research on the characteristics of conduction-based model of partially flattened heat pipe[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(10): 123-132. | |
28 | Yu J, Li Y, Xin Z F, et al. Experimental investigation on the thermal characteristics of ultrathin vapour chamber with in-plane bending[J]. Applied Thermal Engineering, 2022, 217: 119175. |
29 | Zhou W J, Li Y, Chen Z S, et al. Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118792. |
30 | Ahamed M S, Saito Y, Mashiko K, et al. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices[J]. Heat and Mass Transfer, 2017, 53(11): 3241-3247. |
31 | Jiang L L, Tang Y, Pan M Q. Effects of bending on heat transfer performance of axial micro-grooved heat pipe[J]. Journal of Central South University, 2011, 18(2): 580-586. |
32 | Ranjan R, Murthy J Y, Garimella S V, et al. A numerical model for transport in flat heat pipes considering wick microstructure effects[J]. International Journal of Heat and Mass Transfer, 2011, 54(1/2/3): 153-168. |
33 | Xiao B, Faghri A. A three-dimensional thermal-fluid analysis of flat heat pipes[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3113-3126. |
34 | Golnaraghi M F, Kuo B C. Automatic Control Systems[M]. 10th ed. New York: McGraw-Hill Education, 2017: 139-171. |
35 | Ljung L. System identification[M]//Signal Analysis and Prediction. Boston, MA: Birkhäuser Boston, 1998: 163-173. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[8] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[9] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[10] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[11] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[12] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||