化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 104-112.DOI: 10.11949/0438-1157.20221593
收稿日期:
2022-11-12
修回日期:
2022-12-25
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
龚建英
作者简介:
吴馨(1996—),女,博士研究生,wx3119103247@stu.xjtu.edu.cn
基金资助:
Xin WU(), Jianying GONG(), Long JIN, Yutao WANG, Ruining HUANG
Received:
2022-11-12
Revised:
2022-12-25
Online:
2023-06-05
Published:
2023-09-27
Contact:
Jianying GONG
摘要:
实验研究了超声波激励下水平铝板表面液滴群的输运特性,探究了超声功率、初始液滴体积和疏水性对液滴群运动过程的影响。结果表明,液滴群运动聚结及蒸发时间均与超声功率呈负相关,而与初始液滴体积及表面接触角呈正相关。随着超声功率的增大,液滴群粒径分布更均匀,最小运动聚结时间为12 s,同时蒸发时间最多可缩短46 s。随着初始液滴体积的增大,液滴群粒径分布均匀性减弱但聚结现象增强。疏水表面不仅能优化液滴群粒径分布,还能增强运动聚结过程。与裸铝表面相比,疏水表面上液滴群运动聚结时间增加17 s左右,蒸发时间可延长62 s。研究证实超声波具有抑制结霜的可行性。
中图分类号:
吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112.
Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation[J]. CIESC Journal, 2023, 74(S1): 104-112.
实验参数 | 仪器 | 量程 | 误差 |
---|---|---|---|
液滴体积/μl | 微量移液器 | 5~50 | ±0.1 |
空气温度/℃ | 温湿度传感器 | -40~70 | ±1 |
空气相对湿度/% | 温湿度传感器 | 20~90 | ±1 |
接触角/(°) | 接触角测量仪 | 0~180 | ±0.1 |
超声波功率/ W | 超声波发生器 | 0~60 | ±0.6 |
表1 实验参数误差分析
Table 1 Error analysis of experimental parameters
实验参数 | 仪器 | 量程 | 误差 |
---|---|---|---|
液滴体积/μl | 微量移液器 | 5~50 | ±0.1 |
空气温度/℃ | 温湿度传感器 | -40~70 | ±1 |
空气相对湿度/% | 温湿度传感器 | 20~90 | ±1 |
接触角/(°) | 接触角测量仪 | 0~180 | ±0.1 |
超声波功率/ W | 超声波发生器 | 0~60 | ±0.6 |
图4 功率为40 W的超声波作用下5 μl初始液滴生成的液滴群演变过程
Fig.4 The evolution process of droplets generated from the initial droplet with a volume of 5 μl under the action of ultrasonic wave with the power of 40 W
图5 功率为40 W的超声波作用下25 μl初始液滴生成的液滴群演变过程
Fig. 5 The evolution process of droplets generated from the initial droplet with a volume of 25 μl under the action of ultrasonic wave with the power of 40 W
图7 功率为40 W的超声波作用下疏水表面20 μl初始液滴生成的液滴群演化过程
Fig.7 The evolution process of droplets on the hydrophobic surface generated from the initial droplet with a volume of 20 μl under the action of ultrasonic wave with the power of 40 W
图8 不同超声功率下裸铝表面与疏水表面上液滴群各阶段时间的比较
Fig.8 Comparison of the time of each stage of droplets on bare aluminum surface and hydrophobic surface under different ultrasonic power
1 | 胡斌, 王如竹, 骆名文, 等. 空气源热泵新型除霜技术及智能除霜策略[J]. 制冷技术, 2018, 38(5): 1-6. |
Hu B, Wang R Z, Luo M W, et al. Innovative defrosting technologies and smart control strategies of air-source heat pumps[J]. Chinese Journal of Refrigeration Technology, 2018, 38(5): 1-6. | |
2 | 张骏, 陈晓园. 低温制热工况空调器最佳除霜起始点的实验研究[J]. 制冷技术, 2016, 36(6): 46-49. |
Zhang J, Chen X Y. Experimental research on optimal defrosting starting point for air conditioner in low temperature heating condition[J]. Chinese Journal of Refrigeration Technology, 2016, 36(6): 46-49. | |
3 | 孙茹男, 罗会龙. 空气源热泵除霜研究现状及展望[J]. 制冷与空调(四川), 2020, 34(5): 607-612. |
Sun R N, Luo H L. Research status and prospect of defrosting of air source heat pump[J]. Refrigeration & Air Conditioning, 2020, 34(5): 607-612. | |
4 | 李刚, 田小亮. 空气源热泵系统结霜及除霜实验研究[J]. 科学技术创新, 2020(12): 7-9. |
Li G, Tian X L. Experimental study on frosting and defrosting of air source heat pump system[J]. Scientific and Technological Innovation, 2020(12): 7-9. | |
5 | 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256. |
Su W, Lu Z F, Zhang X S. Frost growth dynamics on vertical superhydrophobic fins[J]. CIESC Journal, 2021, 72(S1): 244-256. | |
6 | 张鲁梦, 郭宪民, 薛杰. 翅片管换热器表面霜层生长特性的实验研究[J]. 化工学报, 2018, 69(S2): 186-192. |
Zhang L M, Guo X M, Xue J. Experimental study of frost growth characteristics on surface of finned-tube heat exchangers[J]. CIESC Journal, 2018, 69(S2): 186-192. | |
7 | 吴晓敏, 褚福强, 陈永根. 疏水表面结霜初期液滴生长的理论分析[J]. 化工学报, 2015, 66(S1): 60-64. |
Wu X M, Chu F Q, Chen Y G. Theoretical analysis of droplets growth in early stage of frosting on hydrophobic surfaces[J]. CIESC Journal, 2015, 66(S1): 60-64. | |
8 | 范晨, 梁彩华, 江楚遥, 等. 空气源热泵结霜/除霜特性的数值模拟[J]. 制冷技术, 2014, 34(1): 18-25. |
Fan C, Liang C H, Jiang C Y, et al. Numerical simulation of frosting/defrosting characteristics of air source heat pump[J]. Chinese Journal of Refrigeration Technology, 2014, 34(1): 18-25. | |
9 | 路伟鹏, 王伟, 李林涛, 等. 不同表面浸润性对除霜过程影响的实验研究[J]. 制冷技术, 2014, 34(1): 26-31. |
Lu W P, Wang W, Li L T, et al. Experimental study of the influence of different wettability surface on the defrost process[J]. Chinese Journal of Refrigeration Technology, 2014, 34(1): 26-31. | |
10 | Melo C. An experimental study on defrost heaters applied to frost-free household refrigerators[J]. Applied Thermal Engineering, 2013, 51(1/2): 239-245. |
11 | 曹小林, 曹双俊, 段飞, 等. 空气源热泵除霜问题研究现状与展望[J]. 流体机械, 2011, 39(4): 75-79. |
Cao X L, Cao S J, Duan F, et al. Current situation and development prospect of air source heat pump defrosting research[J]. Fluid Machinery, 2011, 39(4): 75-79. | |
12 | 张志, 贾少波, 谢伟, 等. 蒸发器盘管结霜特性的实验研究[J]. 制冷技术, 2015, 35(2): 29-33. |
Zhang Z, Jia S B, Xie W, et al. Experimental study of frost formation characteristics on evaporator coil[J]. Chinese Journal of Refrigeration Technology, 2015, 35(2): 29-33. | |
13 | 曲明璐, 余倩, 李封澍, 等. 空气源热泵除霜问题的研究现状及进展[J]. 建筑节能, 2016, 44(8): 1-5. |
Qu M L, Yu Q, Li F S, et al. Research and progress of defrosting for air source heat pumps[J]. Building Energy Efficiency, 2016, 44(8): 1-5. | |
14 | Cheng C H. Frost formation and frost crystal growth on a cold plate in atmospheric air flow[J]. International Journal of Heat and Mass Transfer, 2002, 45(21): 4289-4303. |
15 | 马强, 吴晓敏. 表面特性对结霜和融霜排液的影响[J]. 化工学报, 2017, 68(S1): 90-95. |
Ma Q, Wu X M. Effect of surface wettability on frosting, defrosting and drainage[J]. CIESC Journal, 2017, 68(S1): 90-95. | |
16 | 汪谦旭, 刘益才, 梁恒, 等. 融霜下落水对换热器除霜性能的影响[J]. 化工学报, 2021, 72(S1): 356-361. |
Wang Q X, Liu Y C, Liang H, et al. Impact of defrost falling water on defrost performance of heat exchanger[J]. CIESC Journal, 2021, 72(S1): 356-361. | |
17 | 宋立超, 秦妍, 李维仲. 磁场作用下不同润湿性表面结霜实验研究[J]. 化工学报, 2020, 71(12): 5521-5529. |
Song L C, Qin Y, Li W Z. Experimental study of frosting on different wettability surfaces under magnetic field[J]. CIESC Journal, 2020, 71(12): 5521-5529. | |
18 | 李栋, 陈振乾. 超声波瞬间脱除冷表面冻结液滴的试验研究[J]. 化工学报, 2013, 64(8): 2730-2735. |
Li D, Chen Z Q. Instantaneous removal of frozen water droplets from cold surface by means of ultrasonic vibration[J]. CIESC Journal, 2013, 64(8): 2730-2735. | |
19 | 李栋. 超声波对冷表面霜层生长及冻结液滴脱除影响的试验研究[D]. 南京: 东南大学, 2014. |
Li D. Experimental study of effects of ultrasound on frost growth and frozen water droplets removal on cold surface[D]. Nanjing: Southeast University, 2014. | |
20 | 阎勤劳, 朱琳, 张密娥, 等. 冷风机超声波除霜技术试验研究[J]. 农业机械学报, 2003, 34(4): 74-75, 85. |
Yan Q L, Zhu L, Zhang M, et al. Study on ultrasonic defrost technology of refrigeration fan[J]. Transactions of the Chinese Society of Agricultural Machinery, 2003, 34(4): 74-75, 85. | |
21 | Tan H H, Tao T F, Xu G H. Experimental study on defrosting mechanism of intermittent ultrasonic resonance for a finned-tube evaporator[J]. Experimental Thermal and Fluid Science, 2014, 52: 308-317. |
22 | Cheng C H. Oscillation effects on frost formation and liquid droplet solidification on a cold plate in atmospheric air flow[J]. International Journal of Refrigeration, 2003, 26(1): 69-78. |
23 | Liu Y Y, Choi C H. Condensation-induced wetting state and contact angle hysteresis on superhydrophobic lotus leaves[J]. Colloid and Polymer Science, 2013, 291(2): 437-445. |
24 | Li D, Chen Z Q, Shi M H. Effect of ultrasound on frost formation on a cold flat surface in atmospheric air flow[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1247-1252. |
25 | Trapuzzano M, Tejada-Martínez A, Guldiken R, et al. Volume and frequency-independent spreading of droplets driven by ultrasonic surface vibration[J]. Fluids, 2020, 5(1): 18. |
26 | 李栋, 赵孝保, 陈振乾, 等. 超声波去除铝表面残留液滴的试验研究[J]. 工程热物理学报, 2015, 36(9): 2018-2021. |
Li D, Zhao X B, Chen Z Q, et al. Experimental study on residual water droplets removal from aluminum surface by means of ultrasonic vibration[J]. Journal of Engineering Thermophysics, 2015, 36(9): 2018-2021. | |
27 | Nayak P P, Kar D P, Bhuyan S. Droplets merging through wireless ultrasonic actuation[J]. Ultrasonics, 2016, 64: 83-88. |
28 | 丘华川, 姜立标. 超声行波驱动的玻璃表面液滴运动数值模拟[J]. 北京航空航天大学学报, 2017, 43(5): 908-917. |
Qiu H C, Jiang L B. Numerical simulation of droplet motion on glass surface driven by ultrasonic travelling wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 908-917. | |
29 | 林伟翔, 苏港川, 陈强, 等. 基于超声技术的沉浸式换热器强化传热研究[J]. 化工学报, 2021, 72(8): 4055-4063. |
Lin W X, Su G C, Chen Q, et al. Research on heat transfer enhancement of immersed coil heat exchanger by ultrasonic technology[J]. CIESC Journal, 2021, 72(8): 4055-4063. | |
30 | 唐继国, 阎昌琪, 孙立成. 超声波场中蒸汽气泡凝结过程及传热特性[J]. 化工学报, 2015, 66(11): 4359-4365. |
Tang J G, Yan C Q, Sun L C. Condensation process and heat transfer of vapor bubbles in ultrasonic field[J]. CIESC Journal, 2015, 66(11): 4359-4365. |
[1] | 裴蓓, 郝治斌, 徐天祥, 钟子琪, 李瑞, 贾冲, 段玉龙. 表面活性剂对含盐双流体细水雾灭火效能的影响[J]. 化工学报, 2024, 75(9): 3369-3378. |
[2] | 霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273. |
[3] | 赵璐璐, 唐二军, 邢旭腾, 刘少杰, 褚晓萌, 呼娜, 张泽. POSS改性氧化石墨烯对涂层防腐和疏水性能的影响[J]. 化工学报, 2024, 75(5): 1977-1986. |
[4] | 董霄, 白志山, 杨晓勇, 殷伟, 刘宁普, 于启凡. CHPPO工艺氧化液耦合除杂技术的研究与工业应用[J]. 化工学报, 2024, 75(4): 1630-1641. |
[5] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[6] | 张昕锐, 陈雪梅. CNT/PVA@碳布膜的光电联合驱动界面蒸发性能研究[J]. 化工学报, 2024, 75(3): 1028-1039. |
[7] | 王禹丹, 徐晨, 阮达, 春江, 马学虎. V形沟槽纳米线团簇表面的毛细抽吸-补液蒸发传热特性研究[J]. 化工学报, 2024, 75(10): 3424-3436. |
[8] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[9] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[10] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[11] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[12] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 186
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||