1 |
郭仕权, 孙亚昕, 李从举. 直接甲醇燃料电池(DMFC)阳极过渡金属基催化剂的研究进展[J]. 工程科学学报, 2022, 44(4): 625-640.
|
|
Guo S Q, Sun Y X, Li C J. Research progress in anode transition metal-based catalysts for direct methanol fuel cell[J]. Chinese Journal of Engineering, 2022, 44(4): 625-640.
|
2 |
Chen X Y, Li T C, Shen J N, et al. From structures, packaging to application: a system-level review for micro direct methanol fuel cell[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 669-678.
|
3 |
严文锐, 张劲, 王海宁, 等. 重整甲醇高温聚合物电解质膜燃料电池研究进展与展望[J]. 化工进展, 2021, 40(6): 2980-2992.
|
|
Yan W R, Zhang J, Wang H N, et al. Advancement toward reforming methanol high temperature polymer electrolyte membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2980-2992.
|
4 |
Su S J, Liang J S, Luo Y, et al. A new water management system for air-breathing direct methanol fuel cell using superhydrophilic capillary network and evaporation wings[J]. Energy Conversion and Management, 2021, 246: 114665.
|
5 |
Abraham B G, Chetty R. Design and fabrication of a quick-fit architecture air breathing direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6845-6856.
|
6 |
Alias M S, Kamarudin S K, Zainoodin A M, et al. Active direct methanol fuel cell: an overview[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19620-19641.
|
7 |
Wang L W, Yin L, Yang W L, et al. Evaluation of structural aspects and operation environments on the performance of passive micro direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2594-2605.
|
8 |
Xing L, Shi W D, Su H N, et al. Membrane electrode assemblies for PEM fuel cells: a review of functional graded design and optimization[J]. Energy, 2019, 177: 445-464.
|
9 |
马小杰, 方卫民. 质子交换膜燃料电池双极板研究进展[J]. 材料导报, 2006, 20(1): 26-30.
|
|
Ma X J, Fang W M. Research and progress of bipolar plate for proton-exchange membrane fuel cell[J]. Materials Review, 2006, 20(1): 26-30.
|
10 |
张立昌, 蔡超, 谭金婷, 等. 质子交换膜燃料电池微孔层在反极过程中的耐久性研究[J]. 材料导报, 2022, 36(14): 67-73.
|
|
Zhang L C, Cai C, Tan J T, et al. Study on the durability of the microporous layer of proton exchange membrane fuel cell during the voltage reversal process[J]. Materials Reports, 2022, 36(14): 67-73.
|
11 |
Ali Abdelkareem M, Sayed E T, Nakagawa N. Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells[J]. Energy, 2020, 209: 118492.
|
12 |
Zhao Z G, Wang Z T, Li K, et al. Cathode diffusion layer and current collector with slotted foam stainless steel for a micro direct methanol fuel cell[J]. RSC Advances, 2022, 12(44): 28738-28745.
|
13 |
Rambabu G, Bhat S D, Figueiredo F M L. Carbon nanocomposite membrane electrolytes for direct methanol fuel cells—a concise review[J]. Nanomaterials, 2019, 9(9): 1292.
|
14 |
高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555.
|
|
Gao W T, Lei Y J, Zhang X, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555.
|
15 |
Ali Abdelkareem M, Sayed E T, Mohamed H O, et al. Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: theoretical consideration and current progress[J]. Progress in Energy and Combustion Science, 2020, 77: 100805.
|
16 |
Tan W C, Saw L H, Thiam H S, et al. Overview of porous media/metal foam application in fuel cells and solar power systems[J]. Renewable and Sustainable Energy Reviews, 2018, 96: 181-197.
|
17 |
Yuan W, Tang Y, Yang X J, et al. Porous metal materials for polymer electrolyte membrane fuel cells—a review[J]. Applied Energy, 2012, 94: 309-329.
|
18 |
Zhao Z G, Zhang F, Zhang Y H, et al. Performance optimization of μDMFC with foamed stainless steel cathode current collector[J]. Energies, 2021, 14(20): 6608.
|
19 |
Braz B A, Moreira C S, Oliveira V B, et al. Effect of the current collector design on the performance of a passive direct methanol fuel cell[J]. Electrochimica Acta, 2019, 300: 306-315.
|
20 |
Braz B A, Oliveira V B, Pinto A M F R. Experimental studies of the effect of cathode diffusion layer properties on a passive direct methanol fuel cell power output[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19334-19343.
|
21 |
Braz B A, Oliveira V B, Pinto A M F R. Optimization of a passive direct methanol fuel cell with different current collector materials[J]. Energy, 2020, 208: 118394.
|
22 |
Hao W B, Ma H Y, Sun G X, et al. Magnesia phosphate cement composite bipolar plates for passive type direct methanol fuel cells[J]. Energy, 2019, 168: 80-87.
|
23 |
Zhu Y L, Zhang X J, Li J Y, et al. Three-dimensional graphene as gas diffusion layer for micro direct methanol fuel cell[J]. International Journal of Modern Physics B, 2018, 32(12): 1850145.
|
24 |
Zhang X Y, Huang Y X, Zhou X L, et al. Characterizations of carbonized electrospun mats as diffusion layers for direct methanol fuel cells[J]. Journal of Power Sources, 2020, 448: 227410.
|
25 |
Alrashidi A, Liu H T. Laser-perforated anode gas diffusion layers for direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(34): 17886-17896.
|
26 |
朱逸涵. 泡沫碳基柔性自支撑材料的制备及其电化学和微波吸收性能研究[D]. 镇江: 江苏大学, 2022.
|
|
Zhu Y H. Carbon foam-based flexible self-standing materials: synthesis, electrochemical and microwave absorbing properties[D]. Zhenjiang: Jiangsu University, 2022.
|
27 |
闫涛. 三维泡沫碳材料的制备、改性及其电化学性能研究[D]. 天津: 天津大学, 2020.
|
|
Yan T. Preparation, modification and electrochemical performance of threedimensional carbon foams[D]. Tianjin: Tianjin University, 2020.
|
28 |
Zhu Y H, Wang D F, Yan X H, et al. Rational design for Mn3O4@carbon foam nanocomposite with 0D@3D structure for boosting electrochemical performance[J]. Energy & Fuels, 2020, 34(11): 14924-14933.
|
29 |
Zhu Y H, Wang D F, Yan X H, et al. Vertical, dense and uniform V2O5 nanoneedle arrays on carbon foam for boosting electrochemical performance[J]. Journal of Energy Storage, 2021, 37: 102492.
|
30 |
Okech G, Emam M, Mori S, et al. Enhancing the performance of direct methanol fuel cells using new cathode flow field designs: an experimental investigation[J]. International Journal of Hydrogen Energy, 2024, 57: 161-175.
|
31 |
Okech G, Emam M, Mori S, et al. Experimental study on the effect of new anode flow field designs on the performance of direct methanol fuel cells[J]. Energy Conversion and Management, 2024, 301: 117988.
|
32 |
Li Y, Zhang X L, Nie L, et al. Stainless steel fiber felt as cathode diffusion backing and current collector for a micro direct methanol fuel cell with low methanol crossover[J]. Journal of Power Sources, 2014, 245: 520-528.
|
33 |
李洋. 金属基微型直接甲醇燃料电池关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
Li Y. Research on the key technologies of metal based micro direct methanol fuel cell[D]. Harbin: Harbin Institute of Technology, 2019.
|
34 |
Yuan T, Zou Z Q, Chen M, et al. New anodic diffusive layer for passive micro-direct methanol fuel cell[J]. Journal of Power Sources, 2009, 192(2): 423-428.
|