化工学报 ›› 2025, Vol. 76 ›› Issue (5): 2209-2218.DOI: 10.11949/0438-1157.20241190
花敬贤(), 罗宇荣, 顾亚伟, 吴婷婷, 潘宜昌(
), 邢卫红
收稿日期:
2024-10-25
修回日期:
2024-12-05
出版日期:
2025-05-25
发布日期:
2025-06-13
通讯作者:
潘宜昌
作者简介:
花敬贤(1996—),男,博士研究生,huajingxian@njtech.edu.cn
基金资助:
Jingxian HUA(), Yurong LUO, Yawei GU, Tingting WU, Yichang PAN(
), Weihong XING
Received:
2024-10-25
Revised:
2024-12-05
Online:
2025-05-25
Published:
2025-06-13
Contact:
Yichang PAN
摘要:
金属有机框架(MOFs)作为新兴的膜材料,其变革发展正逐渐推动膜分离技术迈向1 nm尺度的精准分子分离。ZIF-8是至今研究最广泛的MOF膜材料之一,其晶体学<100>方向具有四元环孔口,临界直径介于乙烯和乙烷分子动力学直径之间。利用表面活性剂辅助合成策略制备{100}取向ZIF-8纳米薄片,并以此为基本构建模块制备{100}取向的超薄ZIF-8膜用于乙烯/乙烷的分离。膜的微结构表征与分离性能测试结果表明,得益于取向膜内形成了高度定向的四元环孔道且无晶界缺陷,实现了对乙烯/乙烷的精准分离。在25℃和101 kPa条件下,乙烯/乙烷分离选择性达6.8,乙烯渗透速率达7.33×10-8 mol/(m2·s·Pa),且连续运行100 h无性能衰减。为推进MOF膜在同碳数烃等分子分离领域的理论与技术发展奠定基础。
中图分类号:
花敬贤, 罗宇荣, 顾亚伟, 吴婷婷, 潘宜昌, 邢卫红. 超薄取向ZIF-8膜的制备及乙烯/乙烷高效分离[J]. 化工学报, 2025, 76(5): 2209-2218.
Jingxian HUA, Yurong LUO, Yawei GU, Tingting WU, Yichang PAN, Weihong XING. Preparation of ultra-thin oriented ZIF-8 membrane for efficient ethylene/ethane separation[J]. CIESC Journal, 2025, 76(5): 2209-2218.
图6 ZIF-8纳米片标准液的紫外吸收曲线及其浓度和吸光度间的关系以及纳米片层的XRD谱图
Fig.6 Ultraviolet absorption curve of ZIF-8 nanosheet solution and the relationship between concentration and absorbance as well as XRD patterns of ZIF-8 nanosheet layer
图7 取向排布的ZIF-8纳米片层及由其外延生长制备的取向ZIF-8膜的表面和断面SEM图
Fig.7 The surface and section SEM images of oriented ZIF-8 nanosheets and the oriented ZIF-8 membrane prepared by epitaxial growth
图10 超薄{100}取向ZIF-8膜与其他已报道膜的乙烯/乙烷分离性能对比
Fig.10 C2H4/C2H6 separation performance of ultrathin {100}-oriented ZIF-8 membrane compared with those of other reported membranes
图11 进料压力和进料温度对超薄{100}取向ZIF-8膜乙烯/乙烷分离性能的影响
Fig.11 Effect of feed pressure and temperature on C2H4/C2H6 separation performance of ultrathin {100}-oriented ZIF-8 membrane
1 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
2 | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
Pan Y C, Zhou R F, Xing W H. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: state-of-the-art and challenges[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. | |
3 | 徐南平, 赵静, 刘公平. “双碳”目标下膜技术发展的思考[J]. 化工进展, 2022, 41(3): 1091-1096. |
Xu N P, Zhao J, Liu G P. Thinking of membrane technology development towards “carbon emission peak” and “carbon neutrality” targets[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1091-1096. | |
4 | Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
5 | Yang L F, Qian S H, Wang X B, et al. Energy-efficient separation alternatives: metal-organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews, 2020, 49(15): 5359-5406. |
6 | Sun Y W, Hu S, Yan J H, et al. Oriented ultrathin π-complexation MOF membrane for ethylene/ethane and flue gas separations[J]. Angewandte Chemie International Edition, 2023, 62(43): e202311336. |
7 | Ren Y X, Liang X, Dou H Z, et al. Membrane-based olefin/paraffin separations[J]. Advanced Science, 2020, 7(19): 2001398. |
8 | Lee T H, Smith Z P. Better standards are needed for membrane materials[J]. Nature Materials, 2024, 23: 11-12. |
9 | Torrente-Murciano L, Dunn J B, Christofides P D, et al. The forefront of chemical engineering research[J]. Nature Chemical Engineering, 2024, 1: 18-27. |
10 | Horike S, Kitagawa S. The development of molecule-based porous material families and their future prospects[J]. Nature Materials, 2022, 21(9): 983-985. |
11 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
12 | Ban Y J, Yang W S. Multidimensional building blocks for molecular sieve membranes[J]. Accounts of Chemical Research, 2022, 55(21): 3162-3177. |
13 | Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation[J]. Nature Nanotechnology, 2022, 17(9): 911-923. |
14 | Chen G N, Chen C L, Guo Y N, et al. Solid-solvent processing of ultrathin, highly loaded mixed-matrix membrane for gas separation[J]. Science, 2023, 381(6664): 1350-1356. |
15 | 金万勤, 徐南平. 限域传质分离膜[J]. 化工学报, 2018, 69(1): 50-56. |
Jin W Q, Xu N P. Membrane separation based on mechanism of confined mass transfer[J]. CIESC Journal, 2018, 69(1): 50-56. | |
16 | Pan Y C, Li T, Lestari G, et al. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes[J]. Journal of Membrane Science, 2012, 390: 93-98. |
17 | Zhou S, Shekhah O, Jia J T, et al. Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons[J]. Nature Energy, 2021, 6: 882-891. |
18 | Zhang Z N, Zhu H, Jin H, et al. Restricting linker rotation in nanocages of ZIF-8 membranes using crown ether “molecular locks” for enhanced propylene/propane separation[J]. Angewandte Chemie International Edition, 2025, 64(3): e202415023. |
19 | Sun Y, Yan J, Jiang J, et al. Hierarchical defect-rich UiO-66 membrane towards superior flue gas and butane isomer separations[J]. Science Bulletin, 2024, 69(14): 2174-2178. |
20 | Yang W H, Yang X, Wang Y X, et al. Pervaporation separation of C6 alkane isomers by Al-bttotb membrane[J]. Journal of Membrane Science, 2022, 661: 120916. |
21 | Wang Y C, Ban Y J, Hu Z Y, et al. Energy-efficient extraction of linear alkanes from various isomers using structured metal-organic framework membrane[J]. Nature Communications, 2023, 14(1): 6617. |
22 | 王宇轩, 花敬贤, 潘宜昌, 等. 两步干凝胶转化法制备UiO-66膜并用于己烷异构体的高效分离[J]. 石油炼制与化工, 2024, 55(1): 112-121. |
Wang Y X, Hua J X, Pan Y C, et al. Fabrication of UiO-66 membrane by two-step dry gel conversion for efficient separation of hexane isomer[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 112-121. | |
23 | Wu X C, Wei W, Jiang J W, et al. High-flux high-selectivity metal-organic framework MIL-160 membrane for xylene isomer separation by pervaporation[J]. Angewandte Chemie International Edition, 2018, 57(47): 15354-15358. |
24 | Li K H, Olson D H, Seidel J, et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene[J]. Journal of the American Chemical Society, 2009, 131(30): 10368-10369. |
25 | Pan Y C, Lai Z P. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions[J]. Chemical Communications, 2011, 47(37): 10275-10277. |
26 | Brown A J, Brunelli N A, Eum K, et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes[J]. Science, 2014, 345(6192): 72-75. |
27 | Shekhah O, Swaidan R, Belmabkhout Y, et al. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study[J]. Chemical Communications, 2014, 50(17): 2089-2092. |
28 | Ma X L, Kumar P, Mittal N, et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation[J]. Science, 2018, 361(6406): 1008-1011. |
29 | Zhou S, Wei Y Y, Li L B, et al. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Science Advances, 2018, 4(10): eaau1393. |
30 | Wei R C, Chi H Y, Li X, et al. Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation[J]. Advanced Functional Materials, 2020, 30(7): 1907089. |
31 | Wei R C, Liu X W, Zhou Z Y, et al. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation[J]. Science Advances, 2022, 8(7): eabm6741. |
32 | Zhang C H, Yan J H, Ji T T, et al. Fabrication of highly (110)-oriented ZIF-8 membrane at low temperature using nanosheet seed layer[J]. Journal of Membrane Science, 2022, 641: 119915. |
33 | Yang F, Mu H, Wang C Q, et al. Morphological map of ZIF-8 crystals with five distinctive shapes: feature of filler in mixed-matrix membranes on C3H6/C3H8 separation[J]. Chemistry of Materials, 2018, 30(10): 3467-3473. |
34 | Pustovarenko A, Goesten M G, Sachdeva S, et al. Nanosheets of nonlayered aluminum metal-organic frameworks through a surfactant-assisted method[J]. Advanced Materials, 2018, 30(26): e1707234. |
35 | Wang Z Y, Wang W J, Zeng T, et al. Covalent-linking-enabled superior compatibility of ZIF-8 hybrid membrane for efficient propylene separation[J]. Advanced Materials, 2022, 34(6): e2104606. |
36 | Sun Y W, Liu Y, Caro J, et al. In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity[J]. Angewandte Chemie International Edition, 2018, 57(49): 16088-16093. |
37 | Hou Q Q, Zhou S, Wei Y Y, et al. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation[J]. Journal of the American Chemical Society, 2020, 142(21): 9582-9586. |
38 | Choi E, Choi J I, Kim Y J, et al. Graphene nanoribbon hybridization of zeolitic imidazolate framework membranes for intrinsic molecular separation[J]. Angewandte Chemie International Edition, 2022, 61(49): e202214269. |
39 | Hua J X, Li C, Tao H X, et al. Improved C3H6/C3H8 separation performance on ZIF-8 membranes through enhancing PDMS contact-dependent confinement effect[J]. Journal of Membrane Science, 2021, 636: 119613. |
40 | Song E Y, Wei K F, Lian H Q, et al. Improved propylene/propane separation performance under high temperature and pressures on in situ ligand-doped ZIF-8 membranes[J]. Journal of Membrane Science, 2021, 617: 118655. |
41 | Liu G Z, Guo Y N, Chen C L, et al. Eliminating lattice defects in metal-organic framework molecular-sieving membranes[J]. Nature Materials, 2023, 22(6): 769-776. |
[1] | 郭彭涛, 王婷, 薛波, 应允攀, 刘大欢. 用于CH4/N2分离的多吸附位点超微孔MOF[J]. 化工学报, 2025, 76(5): 2304-2312. |
[2] | 张越, 刘佳鑫, 马敬, 刘毅. 金属有机骨架膜应用于海水提铀研究进展[J]. 化工学报, 2025, 76(5): 2087-2100. |
[3] | 胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, 2025, 76(5): 1973-1996. |
[4] | 霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273. |
[5] | 张林, 张子怡, 李勇, 童少平. Fe-MOF-74前体制备铁-碳/氮复合材料及其活化过硫酸盐性能[J]. 化工学报, 2024, 75(5): 1882-1889. |
[6] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
[7] | 张子佳, 仇昕月, 孙翔, 罗志斌, 罗海中, 贺高红, 阮雪华. 聚酰亚胺膜材料分子结构设计强化CO2渗透性研究进展[J]. 化工学报, 2024, 75(4): 1137-1152. |
[8] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[9] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[10] | 李沐紫, 贾国伟, 赵砚珑, 张鑫, 李建荣. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
[11] | 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432. |
[12] | 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402. |
[13] | 李贵贤, 王可, 王健, 孟文亮, 李婧玮, 杨勇, 范宗良, 王东亮, 周怀荣. 膜分离捕集燃煤电厂烟气CO2过程优化设计[J]. 化工学报, 2022, 73(11): 5065-5077. |
[14] | 张后虎, 吴晓莉, 陈冲冲, 陈静静, 王景涛. CD-MOF二维层状膜制备及混合溶剂精准分离研究[J]. 化工学报, 2022, 73(10): 4539-4550. |
[15] | 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||