化工学报 ›› 2014, Vol. 65 ›› Issue (3): 765-776.DOI: 10.3969/j.issn.0438-1157.2014.03.001
朱君悦1, 段远源1, 王晓东2, 闵琪3
收稿日期:
2013-07-01
修回日期:
2013-10-14
出版日期:
2014-03-05
发布日期:
2014-03-05
通讯作者:
段远源
作者简介:
朱君悦(1986—),男,博士研究生。
基金资助:
国家自然科学基金项目(21176133);高等学校博士学科点专项科研基金项目(20100002110045)。
ZHU Junyue1, DUAN Yuanyuan1, WANG Xiaodong2, MIN Qi3
Received:
2013-07-01
Revised:
2013-10-14
Online:
2014-03-05
Published:
2014-03-05
Supported by:
supported by the National Natural Science Foundation of China(21176133)and the Specialized Research Fund for the Doctoral Program of Higher Education of China(20100002110045).
摘要: 对流体在固体表面超铺展特性的研究进展进行了综述,总结了具有超铺展特性的动态湿润体系、超铺展特性的影响因素、内在机理以及实验关联式建立和数值模拟方法。部分丙硅氧烷类和烷基乙氧基化物类以及少数离子型表面活性剂溶液具有超铺展特性,浓度和固体表面能是超铺展的重要影响因素。气液界面的浓度Marangoni效应被认为是超铺展过程的控制因素,表面活性剂在气液、固液和三相接触线前缘固气界面的输运和吸附对浓度Marangoni效应有重要影响。分析认为,实验方面未来应拓展实验体系,建立超铺展产生的判据;深入研究宏观影响因素以及微观输运和吸附机理,同时考虑外加物理场影响,为超铺展的实际应用奠定基础。理论方面需综合考虑表面活性剂向界面的输运、吸附对界面性质的作用规律以及浓度Marangoni效应的影响,借鉴相对成熟的牛顿流体动态湿润理论,建立描述超铺展特性的全过程理论模型。数值模拟方面应以分子动力学模拟为基础建立表面活性剂输运和界面吸附的微观物理模型,将其引入流体动力学模型,实现对超铺展过程精确定量化的描述。本文还给出了可能的超铺展体系铺展全过程的物理图景。
中图分类号:
朱君悦, 段远源, 王晓东, 闵琪. 流体在固体表面超铺展特性的研究进展[J]. 化工学报, 2014, 65(3): 765-776.
ZHU Junyue, DUAN Yuanyuan, WANG Xiaodong, MIN Qi. Review of super-spreading of fluids on solid substrates[J]. CIESC Journal, 2014, 65(3): 765-776.
[1] | Yang Yusen(杨豫森), Zhen Kejian(甄克建), Yan Junjie(严俊杰), Liu Jiping(刘继平), Hu Shenhua(胡申华). Marangoni condensation heat transfer for binary mixture vapor at different vapor pressures[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2006, 57(12): 2816-2822 |
[2] | Wang Shuangfeng(汪双凤), Hu Yanxin(胡艳鑫), Li Xuanyou(李选友). Heat-transport capability of self-rewetting fluid heat pipe[J]. CIESC Journal (化工学报), 2012, 63(12): 3791-3797 |
[3] | Gokhale S J, Plawsky J L, Wayner P C Jr. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops[J]. Langmuir, 2005, 21: 8188-8197 |
[4] | Wang Songling(王松岭), Li Chunxi(李春曦), Ye Xuemin(叶学民). Drop spreading characteristics driven by gradients of temperature and surfactant concentration[J]. CIESC Journal (化工学报), 2011, 62(9): 2512-2519 |
[5] | Li Bin(李滨), Li Youming(李友明), Lu Ruijiang(陆瑞江). Effect of modified nanoTiO2 on properties of coating and coated paper[J]. CIESC Journal (化工学报), 2010, 61(1): 228-234 |
[6] | Min Qi(闵琪), Duan Yuanyuan(段远源), Wang Xiaodong(王晓东). Dynamic wetting of SiO2 dispersed PEG system[J]. Journal of Engineering Thermophysics(工程热物理学报), 2010, 31(3): 385-388 |
[7] | Min Q, Duan Y Y, Wang X D, Liang Z P, Lee D J, Su A. Spreading of completely wetting, non-Newtonian fluids with non-power-law rheology[J]. J. Colloid Interf. Sci., 2010, 348(1): 250-254 |
[8] | Zhu J Y, Duan Y Y, Wang X D, Min Q. Forced wetting dynamics of sodium dodecyl sulfate glycerol solution on solid substrates[J]. Int. J. Thermophys., 2013, 34(12): 2286-2296 |
[9] | Zhu Junyue(朱君悦), Min Qi(闵琪), Duan Yuanyuan(段远源), Wang Xiaodong(王晓东). Experimental research on wetting dynamics of silicon oil and aqueous solution of glycerol[J]. Journal of Engineering Thermophysics(工程热物理学报), 2010, 31(10): 1647-1650 |
[10] | Min Q, Duan Y Y, Wang X D, Liang Z P, Si C. Does macroscopic flow geometry influence wetting dynamic?[J]. J. Colloid Interf. Sci., 2010, 362(1): 221-227 |
[11] | Ananthapadmanabhan K P, Goddard E D, Chandar P. A study of the solution, interfacial and wetting properties of silicone surfactants[J]. Colloid Surface, 1990, 44: 281-297 |
[12] | Murphy G J, Policello G A, Ruckle R E. Formulation consideration for trisiloxane based organosilicone adjuvants//Proc. of the Brighton Crop Protection Conference Weeds[C]. 1991, 4A-8: 355-362 |
[13] | Hill R M. Superspreading[J]. Curr. Opin. Colloid. In., 1998, 3(3): 247-254 |
[14] | Hill R M. Silicone surfactants—new developments[J]. Curr. Opin. Colloid. In., 2002, 7(5/6): 255-261 |
[15] | Chengara A V, Nikolov A D, Wasan D T. New paradigms for spreading of colloidal fluids on solid surfaces[J]. Adv. Polym. Sci., 2008, 218: 117-141 |
[16] | Lee K S, Ivanova N A, Starov V M, Hilal N, Dutschk V. Kinetics of wetting and spreading by aqueous surfactant solutions[J]. Adv. Colloid Interfac., 2008, 144(1/2): 54-65 |
[17] | Venzmer J. Superspreading — 20 years of physicochemical research[J]. Curr. Opin. Colloid. In., 2011, 16: 335-343 |
[18] | Nikolov A, Wasan B. Superspreading mechanisms: an overview[J]. Eur. Phys. J-Spec. Top., 2011, 197:325-341 |
[19] | Ivanova N A, Starov V M. Wetting of low free energy surfaces by aqueous surfactant solutions[J]. Curr. Opin. Colloid. In., 2011, 16: 285-291 |
[20] | Rafai S, Sarker D, Bergeron V, Meunier J, Bonn D. Superspreading: aqueous surfactant drops spreading on hydrophobic surfaces[J]. Langmuir, 2002, 18: 10486-10488 |
[21] | Ivanova N, Starov V, Rubio R, Ritacco H, Hilal N, Johnson D. Critical wetting concentrations of trisiloxane surfactants[J]. Colloid. Surface. A, 2010, 354: 143-148 |
[22] | Ivanova N A, Zhantenova Z B, Starov V M. Wetting dynamics of polyoxyethylene alkyl ethers and trisiloxanes in respect of polyoxyethylene chains and properties of substrates[J]. Colloid. Surface. A, 2010, 413: 307-313 |
[23] | Wang W X, Wang S J, Du Z P, Wang G Y, Wang L. Properties of glucosamide-based tetrasiloxane surfactants[J]. J. Disper. Sci. Technol., 2012, 33: 654-659 |
[24] | Zhu X, Miller W G, Scriven L E, Davis H T. Superspreading of water—silicone surfactant on hydrophobic surfaces[J]. Colloid. Surface. A, 1994, 90(1):63-78 |
[25] | Stoebe T, Lin Z X, Hill R M, Ward M D, Davis H T. Surfactant-enhanced spreading[J]. Langmuir, 1996, 12: 337-344 |
[26] | Stoebe T, Hill R M, Ward M D, Davis H T. Enhanced spreading of aqueous films containing ethoxylated alcohol surfactants on solid substrates[J]. Langmuir, 1997, 13: 7270-7275 |
[27] | Stoebe T, Hill R M, Ward M D, Davis H T. Enhanced spreading of aqueous films containing ionic surfactants on solid substrates[J]. Langmuir, 1997, 13: 7276-7281 |
[28] | von Bahr M, Tiberg F, Zhumd B V. Spreading dynamics of surfactant solutions[J]. Langmuir, 1999, 15: 7069-7075 |
[29] | Cachile M, Cazabat A M. Spontaneous spreading of surfactant solutions on hydrophilic surfaces: CnEm in ethyleneadn diethylene glycol[J]. Langmuir, 1999, 15: 1515-1521 |
[30] | Cachile M, Cazabat A M, Bardon S, Valignat M P, Vandenbrouck F. Spontaneous spreading of surfactant solutions on hydrophilic surfaces[J]. Colloid. Surface. A, 1999, 159: 47-56 |
[31] | Starov V M, Kosvintsev S R, Velarde M G. Spreading of surfactant solutions over hydrophobic substrates[J]. J. Colloid Interf. Sci., 2000, 227: 185-190 |
[32] | Svitova T, Hill R M, Radke C J. Adsorption layer structures and spreading behavior of aqueous non-ionic surfactants on graphite[J]. Colloid. Surface. A, 2001, 183-185: 607-620 |
[33] | Rafai S, Bonn D. Spreading of non-Newtonian fluids and surfactant solutions on solid surfaces[J]. Physica A, 2005, 358: 58-67 |
[34] | Chengara A, Nikolov A, Wasan D. Surface tension gradient driven spreading of trisiloxane surfactant solution on hydrophobic solid[J]. Colloid. Surface. A, 2002, 193: 31-39 |
[35] | Nikolov A D, Wasan D T, Chengara A, Koczo K, Policello G A, Kolossvary I. Superspreading driven by Marangoni flow[J]. Adv. Colloid Interfac., 2002, 96: 325-338 |
[36] | Ping C C W, Ivanova N A, Starov V M, Hilal N, Johnson D. Spreading behaviour of aqueous trisiloxane solutions over hydrophobic polymer substrates[J]. Colloid J., 2009, 71(3): 391-396 |
[37] | Zhang Y, Han F. The spreading behaviour and spreading mechanism of new glucosamide-based trisiloxane on polystyrene surfaces[J]. J. Colloid Interf. Sci., 2009, 337: 211-217 |
[38] | Ivanova N, Starov V, Johnson D, Hilal N, Rubio R. Spreading of aqueous solutions of trisiloxanes and conventional surfactants over PTFE AF coated silicone wafers[J]. Langmuir, 2009, 25 (6): 3564-3570 |
[39] | Radulovic J, Sefiane K, Shanahan M E R. The role of diffusion in superspreading[J]. J. Adhes. Sci. Technol., 2011, 25: 1361-1370 |
[40] | Radulovic J, Sefiane K, Shanahan M E R. Dynamics of trisiloxane wetting: effects of diffusion and surface hydrophobicity[J]. J. Phys. Chem. C, 2010, 114:13620-13629 |
[41] | Radulovic J, Sefiane K, Shanahan M E R. Spreading and wetting behaviour of trisiloxanes[J]. J. Bionic. Eng., 2009, 6: 341-349 |
[42] | Hill R M, He M T, Davis H T, Scriven L E. Comparison of the liquid crystal phase behavior of four trisiloxane superwetter surfactants[J]. Langmuir, 1994,10: 1724-1734 |
[43] | Rosen M J, Song L D. Superspreading, skein wetting, and dynamic surface tension[J]. Langmuir, 1996, 12(20): 4945-4949 |
[44] | Scriven L E, Sternling C V. The Marangoni effects[J]. Nature, 1960, 187: 186-188 |
[45] | Chengara A, Nikolov A D, Wasan D T. Spreading of a water drop triggered by the surface tension gradient created by the localized addition of a surfactant[J]. Ind. Eng. Chem. Res., 2007, 46: 2987-2995 |
[46] | Chengara A, Nikolov A D, Wasan D T. Vertical spreading of aqueous trisiloxane solution driven by a spontaneously developing surface tension gradient[J]. Ind. Eng. Chem. Res., 2008, 47: 3639-3644 |
[47] | Chengara A. Spreading of colloidal fluids on solid surfaces[D]. Chicago: Illinois Institute of Technology, 2003 |
[48] | Gentle T E, Snow S A. Adsorption of small silicone polyether surfactants at the air/water interface[J]. Langmuir, 1995, 11: 2905-2910 |
[49] | Kumar N, Couzis A, Maldarelli C. Measurement of the kinetic rate constants for the adsorption of superspreading trisiloxanes to an air/aqueous interface and the relevance of these measurements to the mechanism of superspreading[J]. J. Colloid Interf. Sci., 2003, 267(2): 272-285 |
[50] | Ritacco H A, Ortega F, Rubio R G, Ivanova N, Starov V M. Equilibrium and dynamic surface properties of trisiloxane aqueous solutions(Ⅰ): Experimental results[J]. Colloid Surf. A, 2010, 365(1/2/3): 199-203 |
[51] | Ritacco H A, Fainerman V B, Ortega F, Rubio R G, Ivanova N, Starov V M. Equilibrium and dynamic surface properties of trisiloxane aqueous solutions(Ⅱ): Theory and comparison with experiment[J]. Colloid Surf. A, 2010, 365(1/2/3) :204-209 |
[52] | Sieverding E, Humble G D, Fleute-Schlachter I. A new herbicide adjuvant based on a non-super spreading trisiloxane surfactant[J]. J. Plant Dis. Prot., 2006, 20: 1005-1012 |
[53] | Grant L M, Ducker W A. Effect of substrate hydrophobicity on surface-aggregate geometry: zwitterionic and nonionic surfactants[J]. J. Phys. Chem. B, 1997, 101: 5337-5345 |
[54] | Grant L M, Tiberg F, Ducker W A. Nanometer-scale organization of ethylene oxide surfactants on graphite, hydrophilic silica, and hydrophobic silica[J]. J. Phys. Chem. B, 1998, 102: 4288-4294 |
[55] | Dong J P, Mao G Z. Nanoscale aggregate structures of trisiloxane surfactants at the solid-liquid interface[J]. Langmuir, 2004, 20: 2695-2700 |
[56] | Rosen M J, Wu Y F. Superspreading of trisiloxane surfactant mixtures on hydrophobic surfaces(Ⅰ): Interfacial adsorption of aqueous trisiloxane surfactant-n-alkyl pyrrolidinone mixtures on polyethylene[J]. Langmuir, 2001, 17: 7296-7305 |
[57] | Wu Y F, Rosen M J. Superspreading of trisiloxane surfactant mixtures on hydrophobic surfaces(Ⅱ):Interaction and spreading of aqueous trisiloxane surfactant-n-alkyl-pyrrolidinone mixtures in contact with polyethylene[J]. Langmuir, 2002, 18: 2205-2215 |
[58] | Zhou Q, Wu Y F, Rosen M J. Surfactant-surfactant molecular interactions in mixed monolayers at a highly hydrophobic solid/aqueous solution interface and their relationship to enhanced spreading on the solid substrate[J]. Langmuir, 2003, 19: 7955-7962 |
[59] | Beacham D R, Matar O K, Craster R V. Surfactant-enhanced rapid spreading of drops on solid surfaces[J]. Langmuir, 2009, 25(24): 14174-14181 |
[60] | Tiberg F, Cazabat A M. Self-assembly and spreading of non-ionic trisiloxane surfactants[J]. Europhys. Lett., 1994, 25: 205-210 |
[61] | Ruckenstein E. Effect of short-range interactions on spreading[J]. J. Colloid Interf. Sci., 1996, 179(2): 136-142 |
[62] | Ruckenstein E. Superspreading: a possible mechanism[J]. Colloid. Surface. A, 2012, 412: 36-37 |
[63] | Kumar N, Varanasi K, Tilton R D, Garoff S. Surfactant self-assembly ahead of the contact line on a hydrophobic surface and its implications for wetting[J]. Langmuir, 2003, 19: 5366-5373 |
[64] | Shen Y Y, Couzis A, Koplik J, Maldarelli C, Tomassone M S. Molecular dynamics study of the influence of surfactant structure on surfactant-facilitated spreading of droplets on solid surfaces[J]. Langmuir, 2005, 21: 12160-12170 |
[65] | Halverson J D, Maldarelli C, Couzis A, Koplik J. Wetting of hydrophobic substrates by nanodroplets of aqueous trisiloxane and alkyl polyethoxylate surfactant solutions[J]. Chem. Eng. Sci., 2009, 64: 4657-4667 |
[66] | Karapetsas G, Craster R V, Matar O. On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces[J]. J. Fluid Mech., 2011, 670: 5-37 |
[67] | Maldarelli C. On the microhydrodynamics of superspreading[J]. J. Fluid Mech., 2011, 670: 1-4 |
[68] | Shanahan M E R, Houzelle M C, Carre’A. Strange spreading behavior of tricresyl phosphate[J]. Langmuir, 1998, 14(2): 528-532 |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[7] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[8] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[9] | 王光宇, 张锴, 张凯华, 张东柯. 微波加热干燥煤泥热质传递及其能耗特性分析[J]. 化工学报, 2023, 74(6): 2382-2390. |
[10] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[11] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[12] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[13] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[14] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[15] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 965
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1744
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||