化工学报 ›› 2014, Vol. 65 ›› Issue (5): 1721-1728.DOI: 10.3969/j.issn.0438-1157.2014.05.023
张盈盈1,2, 吉晓燕2, 陆小华1
收稿日期:
2014-01-02
修回日期:
2014-02-16
出版日期:
2014-05-05
发布日期:
2014-05-05
通讯作者:
陆小华
基金资助:
国家重点基础研究发展计划项目(2013CB733501);国家自然科学基金项目(21176112,91334202);江苏高校优势学科建设工程;瑞典能源署资助项目。
ZHANG Yingying1,2, JI Xiaoyan2, LU Xiaohua1
Received:
2014-01-02
Revised:
2014-02-16
Online:
2014-05-05
Published:
2014-05-05
Supported by:
supported by the National Basic Research Program of China (2013CB733501), the National Natural Science Foundation of China (21176112,91334202), the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Swedish Energy Agency.
摘要: 胆碱类低共融溶剂是一种新型的离子液体。它不仅具有传统离子液体的优点,还具有价格低廉、低毒、生物可降解等优势。对胆碱类低共融溶剂在CO2捕集与分离中所涉及的物理性质,如气体的溶解度、CO2的吸收-解吸、密度、稳定性、黏度和表面张力等进行考察,并分析了胆碱类低共融溶剂的结构对各物性的影响。通过与传统离子液体的对比,胆碱类低共融溶剂在CO2捕集与分离中的应用具有一定的优势,如CO2溶解度高,黏度低。然而,胆碱类低共融溶剂在气体的选择性分离、表面张力等的研究还不足,且热稳定性方面还存在瓶颈,因此,其在CO2捕集和分离中的应用还有待进一步探讨。
中图分类号:
张盈盈, 吉晓燕, 陆小华. 胆碱类低共融溶剂在CO2捕集与分离中的应用[J]. 化工学报, 2014, 65(5): 1721-1728.
ZHANG Yingying, JI Xiaoyan, LU Xiaohua. Application of choline-based deep eutectic solvents in CO2 capture and separation[J]. CIESC Journal, 2014, 65(5): 1721-1728.
[1] | Hussain A. A single stage membrane process for CO2 capture from flue gas by a facilitated transport membrane [J]. Sep. Sci. Technol., 2012, 47(13): 1857-1865 |
[2] | Ho M T, Allinson G W, Wiley D E. Reducing the cost of CO2 capture from flue gases using pressure swing adsorption [J]. Ind. Eng. Chem. Res., 2008, 47(14): 4883-4890 |
[3] | Basha O M, Keller M J, Luebke D R, Resnik K P, Morsi B I. Development of a conceptual process for selective CO2 capture from fuel gas streams using [hmim][Tf2N] ionic liquid as a physical solvent [J]. Energy Fuels, 2013, 27(7): 3905-3917 |
[4] | Bates E D, Mayton R D, Ntai I, Davis J H. CO2 capture by a task-specific ionic liquid [J]. J. Amer. Chem. Soc., 2002, 124(6): 926-927 |
[5] | Ramdin M, de Loos T W, Vlugt T J H. State-of-the-art of CO2 capture with ionic liquids [J]. Ind. Eng. Chem. Res., 2012, 51(24): 8149-8177 |
[6] | Li Xiaoyong, Hou Mingqiang, Han Buxing, Wang Xiaoling, Zou Lizhuang. Solubility of CO2 in a choline chloride plus urea eutectic mixture [J]. J. Chem. Eng. Data, 2008, 53(2): 548-550 |
[7] | Li Xiaoyong, Hou Mingqiang, Zhang Zhaofu, Han Buxing, Yang Guanying, Wang Xiaoling, Zou Lizhuang. Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters [J]. Green Chem., 2008, 10(8): 879-884 |
[8] | Li Wenjing, Zhang Zhaofu, Han Buxing, Hu Suqin, Song Jinliang, Xie Ye, Zhou Xiaosi. Switching the basicity of ionic liquids by CO2 [J]. Green Chem., 2008, 10(11): 1142-1145 |
[9] | Su W C, Wong D S H, Li M H. Effect of water on solubility of carbon dioxide in (aminomethanamide +2-Hydroxy-N,N,N- trimethylethanaminium chloride) [J]. J. Chem. Eng. Data, 2009, 54(6): 1951-1955 |
[10] | Leron R B, Wong D S H, Li M H. Densities of a deep eutectic solvent based on choline chloride and glycerol and its aqueous mixtures at elevated pressures [J]. Fluid Phase Equilibr., 2012, 335: 32-38 |
[11] | Leron R B, Soriano A N, Li M H. Densities and refractive indices of the deep eutectic solvents (choline chloride + ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K [J]. J. Taiwan Inst. Chem. Eng., 2012, 43(4): 551-557 |
[12] | Wu S H, Caparanga A R, Leron R B, Li M H. Vapor pressure of aqueous choline chloride-based deep eutectic solvents (ethaline, glyceline, maline and reline) at 30—70℃ [J]. Thermochim. Acta, 2012, 544:1-5 |
[13] | Leron R B, Li M H. High-pressure density measurements for choline chloride: Urea deep eutectic solvent and its aqueous mixtures at T = (298.15 to 323.15) K and up to 50 MPa [J]. J. Chem. Thermodyn., 2012, 54: 293-301 |
[14] | Leron R B, Li M H. Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water [J]. Thermochim. Acta, 2012, 530: 52-57 |
[15] | Leron R B, Li M H. Solubility of carbon dioxide in a choline chloride-ethylene glycol based deep eutectic solvent [J]. Thermochim. Acta, 2013, 551: 14-19 |
[16] | Leron R B, Li M H. Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures [J]. J. Chem. Thermodyn., 2013, 57: 131-136 |
[17] | Lin C M, Leron R B, Caparanga A R, Li M H. Henry's constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems [J]. J. Chem. Thermodyn., 2014, 68: 216-220 |
[18] | Zhang Yingying(张盈盈), Lu Xiaohua(陆小华), Feng Xin(冯新), Shi Yijun(史以俊), Ji Xiaoyan(吉晓燕). Properties and applications of choline-based deep eutectic solvents [J]. Progress in Chemistry(化学进展), 2013, 25(6): 881-892 |
[19] | Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures [J]. Chem. Commun., 2003(1): 70-71 |
[20] | Fumino K, Peppel T, Geppert-Rybczynska M, Zaitsau D H, Lehmann J K, Verevkin S P, Kockerling M, Ludwig R. The influence of hydrogen bonding on the physical properties of ionic liquids [J]. Phys. Chem. Chem. Phys., 2011, 13(31): 14064-14075 |
[21] | Abbott A P, Harris R C, Ryder K S, D'Agostino C, Gladden L F, Mantle M D. Glycerol eutectics as sustainable solvent systems [J]. Green Chem., 2011, 13(1): 82-90 |
[22] | Francisco M, van den Bruinhorst A, Zubeir L F, Peters C J, Kroon M C. A new low transition temperature mixture (LTTM) formed by choline chloride + lactic acid: characterization as solvent for CO2 capture [J]. Fluid Phase Equilibr., 2013, 340: 77-84 |
[23] | Hu S Q, Jiang T, Zhang Z F, Zhu A L, Han B X, Song J L, Xie Y, Li W J. Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions[J]. Tetrahedron Lett., 2007, 48(32): 5613-5617 |
[24] | Zhang Q, De Oliveira Vigier K, Royer S, Jerome F. Deep eutectic solvents: syntheses, properties and applications [J]. Chem. Soc. Rev., 2012, 41(21): 7108-7146 |
[25] | Hasib-ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO2 capture—development and progress [J]. Chem. Eng. Process. Process Intensif., 2010, 49(4): 313-322 |
[26] | Ciocirlan O, Iulian O, Croitoru O. Effect of temperature on the physico-chemical properties of three ionic liquids containing choline chloride [J]. Rev. Chim., 2010, 61: 721-723 |
[27] | Popescu A M, Constantin V, Florea A, Baran A. Physical and electrochemical properties of 2-hydroxy-ethyl-trimethyl ammonium chloride based ionic liquids as potential electrolytes for metals electrodeposition [J]. Rev. Chim., 2011, 62(5): 531-537 |
[28] | Shahbaz K, Baroutian S, Mjalli F, Hashim M, AlNashef I. Densities of ammonium and phosphonium based deep eutectic solvents: prediction using artificial intelligence and group contribution techniques [J]. Thermochim. Acta, 2012, 527: 59-66 |
[29] | Yan-Peng H, Rhoda B, Allan N, Alvin R, Meng-Hui L. Diffusivity, density and viscosity of aqueous solutions of choline chloride/ ethylene glycol and choline chloride/malonic acid [J]. J. Chem. Eng. Jpn., 2012, 45(12): 939-947 |
[30] | Widegren J A, Magee J W. Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water [J]. J. Chem. Eng. Data, 2007, 52(6): 2331-2338 |
[31] | Abbott A P, Davies D L, Capper G, Rasheed R K, Tambyrajah V. Ionic liquids and their use as solvents [P]. US, 20040097755A1. 2004-05-20 |
[32] | Kosmulski M, Gustafsson J, Rosenholm J B. Thermal stability of low temperature ionic liquids revisited [J]. Thermochim. Acta, 2004, 412(1/2): 47-53 |
[33] | Maton C, De Vos N, Stevens C V. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools [J]. Chem. Soc. Rev., 2013, 42(13): 5963-5977 |
[34] | Böck R, Wulf S E. Electrodeposition of iron films from an ionic liquid (ChCl/urea/FeCl3 deep eutectic mixtures) [J]. Trans. Inst. Met. Finish., 2009, 87(1): 28-32 |
[35] | D'Agostino C, Harris R C, Abbott A P, Gladden L F, Mantle M D. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by H-1 pulsed field gradient NMR spectroscopy [J]. Phys. Chem. Chem. Phys., 2011, 13(48): 21383- 21391 |
[36] | Tariq M, Freire M G, Saramago B, et al. Surface tension of ionic liquids and ionic liquid solutions [J]. Chem. Soc. Rev., 2012, 41(2): 829-868 |
[37] | MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman C S, Williams C K, Shah N, Fennell P. An overview of CO2 capture technologies [J]. Energy Environ. Sci., 2010, 3(11): 1645-1669 |
[38] | Xu Y, Schutte R P, Hepler L G. Solubilities of carbon dioxide, hydrogen sulfide and sulfur dioxide in physical solvents [J]. Can. J. Chem. Eng., 1992, 70(3): 569-573 |
[39] | Aki S N, Mellein B R, Saurer E M, Brennecke J F. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids [J]. J. Phys. Chem. B, 2004, 108(52): 20355-20365 |
[40] | Burr B, Lyddon L. A comparison of physical solvents for acid gas removal//Proceedings of the Gas Processors' Association Convention[C]. Grapevine, Texas, 2008 |
[41] | Tokuda H, Hayamizu K, Ishii K, Susan M A B H, Watanabe M. Physicochemical properties and structures of room temperature ionic liquids(Ⅱ): Variation of alkyl chain length in imidazolium cation [J]. J. Phys. Chem. B, 2005, 109(13): 6103-6110 |
[42] | Frank E, Abbott A P, Douglas R M. Electrodeposition From Ionic Liquids [M]. Weinheim: Wiley-VCH, 2008: 15-42 |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[6] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[7] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[8] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[9] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[10] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[11] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[12] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[13] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[14] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[15] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 572
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1301
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||