[1] |
吴代鸣.固体物理基础[M].北京:高等教育出版社,2007. WU D M. Fundamentals of Solid State Physics[M]. Beijing:Higher Education Press, 2007.
|
[2] |
王涛, 骆仲泱, 郭顺松, 等. 可控纳米流体的制备及热导率研究[J]. 浙江大学学报, 2007, 41(3):514-518. WANG T, LUO Z Y, GUO S S, et al. Preparation of controllable nanofluids and research on thermal conductivity[J]. J. Zhejiang Univ., 2007, 41(3):514-518.
|
[3] |
NOLAS G S, LYON H B. Expanding the investigation of the thermoelectric properties of rare-earth-filled skutte-rudites[C]//16th International Conference on Thermo-electrics. 1997.
|
[4] |
YANG J, MORELLI D T, MEISNER G P, et al. Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites[J]. Physical Review B, 2003, 67:165207.
|
[5] |
NOLAS G S, YANG J, TAKIZAWA H. Transport properties of germanium-filled CoSb3[J]. Applied Physics Letters, 2004, 84(25):5210-5212.
|
[6] |
BROIDO D A, REINECKE T L. Lattice thermal conductivity of superlattice structures[J]. Physical Review B, 2004, 70:081310.
|
[7] |
GLAVIN B A. Low-temperature heat transfer in nanowires[J]. Physical Review Letters, 2001, 86(19):4318-4321.
|
[8] |
LI D Y, WU Y Y, FAN R, et al. Thermal conductivity of Si/SiGe superlattice nanowires[J]. Applied Physics Letters, 2003, 83(15):3186-3188.
|
[9] |
DAMES C, CHEN G. Theoretical phonon thermal con-ductivity of Si/Ge superlattice nanowires[J]. Journal of Applied Physics, 2004, 95(2):682-693.
|
[10] |
CHEN G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices[J]. Physical Review B, 1998, 57:14960.
|
[11] |
JU S, LIANG X. Investigation of argon nanocrystalline thermal conductivity by molecular dynamics simulation[J]. Journal of Applied Physics, 2010, 108:104307.
|
[12] |
MAITI A, MAHAN G D, PANTELIDES S T. Dynamical simulations of nonequilibrium processes-heat flow and the Kapitza resistance across grain boundaries[J]. Solid State Communications, 1997, 102:517-521
|
[13] |
CROCOMBETTE J, GELEBART L. Multiscale modeling of the thermal conductivity of polycrystalline silicon carbide[J]. Journal of Applied Physics, 2009, 106:083520.
|
[14] |
SCHELLING P K, PHILLPOT S R, KEBLINSKI P. Kapitza conductance and phonon scattering at grain boundaries by simulation[J]. Journal of Applied Physics, 2004, 95(11):6082-6091.
|
[15] |
HUANG X B, DONG W J, WANG G, et al. Synthesis of confined Ag nanowires within mesoporous silica via double solvent technique and their catalytic properties[J]. Journal of Colloid and Interface Science, 2011, 359(1):40-46.
|
[16] |
BISCHOF C, HARTMANN M. Synthesis and characterization of ruthenium-containing MCM-41 and MCM-48 mesoporous materials[C]//12th Proceeding International Zeolite Conference. 1998, 2:809-816.
|
[17] |
ADHYAPAK P V, KARANDIKAR P, VIJAYAMOHANAN K, et al. Syhthesis of silver nanowires inside mesoporous MCM-41 Host[J]. Mater Letter,2004,58:1168-1171.
|
[18] |
CIUPARU D, CHEN Y, LIM S, et al. Uniform-diameter single-walled carbon nanotubes catalytically grown in cobalt-incorporated MCM-41[J]. Journal of Physical Chemistry B, 2004, 108(2):503-507.
|
[19] |
JELLE R A S, JOHANNES D M, MARJAN V H, et al. Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts:impregnation, drying, and thermal treatments[J]. Chemistry of Materials, 2008, 20(9):2921-2931.
|
[20] |
MULLER P F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. Journal of Chemical Physics, 1997, 106:6082-6085.
|
[21] |
SWARTZ E T, POHL R O. Thermal boundary resistance[J]. Reviews of Modern Physics,1989, 61(3):605-668.
|
[22] |
BELLIS L D, PHELAN P E. Variations of acoustic and diffuse mismatch models in predicting thermal-boundary resistance[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(2):144-150.
|
[23] |
JU S, LIANG X, WANG S. Investigation of interfacial thermal resistance of bi-layer nanofilms by nonequilibrium molecular dynamics[J]. Journal of Physics D:Applied Physics, 2010, 43:085407.
|
[24] |
HUANG C L, FENG Y H, ZHANG X X, et al. Prediction of thermal conductivity of aluminum nanocluster-filled mesoporous silica (Al/MCM-41)[J]. International Journal of Thermophysics, 2013, 34(12):2371-2384.
|
[25] |
ZENG T F, CHEN G. Phonon heat conduction in thin films:impacts of thermal boundary resistance and internal heat generation[J]. Transaction of the ASME, Journal of Heat Transfer, 2001, 123:340-347.
|
[26] |
ZENG S Q, HUNT A, GREIF R. Mean free path and apparent thermal conductivity of a gas in a porous medium[J]. Journal of Heat Transfer, 1995, 117(3):758-761.
|
[27] |
LI J, FENG Y H, ZHANG X X, et al. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering[J]. Acta Physica Sinica, 2013, 62(18):186501.
|
[28] |
YUAN S P, JIANG P X. Thermal conductivity of small nickel particles[J]. International Journal of Thermophysics, 2006, 27(2):581-595.
|