化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1772-1778.DOI: 10.11949/j.issn.0438-1157.20181442
收稿日期:
2018-12-05
修回日期:
2019-01-16
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
杨俊兰
作者简介:
杨俊兰(1971—),女,博士,教授,<email>yjlfg@163.com</email>
基金资助:
Received:
2018-12-05
Revised:
2019-01-16
Online:
2019-05-05
Published:
2019-05-05
Contact:
Junlan YANG
摘要:
为了测试润滑油对二氧化碳流动沸腾换热特性的影响,对外径6 mm、内径4 mm紧凑通道内的CO2/润滑油混合物的换热进行实验研究。实验工况为质量流量2.74~5.61 kg·h-1,饱和温度-4~8℃,热通量3.2~5 kW·m-2,油浓度0~6%。结果表明:润滑油浓度越大,CO2的局部传热系数越小;含1.5%油浓度相对于无油工况下平均传热系数下降了约42.4%; 传热系数随热通量、饱和温度的升高而增加,干涸后随着质量流量的增加传热系数增加;干涸随油浓度的增加、热通量的减小、饱和温度的升高、质量流量的增加而延迟;干涸特性对传热系数有显著影响,干涸阶段占整个换热过程的35.4%。
中图分类号:
杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772-1778.
Junlan YANG, Shuying NING. Study on boiling heat transfer characteristics of CO2/ lubricating oil mixture in mini-channel tube[J]. CIESC Journal, 2019, 70(5): 1772-1778.
设备 | 型号 | 测试精度 | 规格 |
---|---|---|---|
注油器 | 自制 | ± 0.1ml | >10 MPa |
Pt热电阻 | HH-WZPK | ± 0.01℃ | -200~500℃ |
压力传感器 | CS-pt100 | ± 0.5%FS | 0~10 MPa |
质量流量计 | HQ915 | ± 0.3 | 0~9 kg·h-1 |
表1 设备特性
Table 1 Device characteristics
设备 | 型号 | 测试精度 | 规格 |
---|---|---|---|
注油器 | 自制 | ± 0.1ml | >10 MPa |
Pt热电阻 | HH-WZPK | ± 0.01℃ | -200~500℃ |
压力传感器 | CS-pt100 | ± 0.5%FS | 0~10 MPa |
质量流量计 | HQ915 | ± 0.3 | 0~9 kg·h-1 |
总过程平均传热系数/(kW·m-2·K-1) | 干涸前平均传热系数/(kW·m-2·K-1) | 干涸过程平均传热系数/(kW·m-2·K-1) | 干涸后平均传热系数/(kW·m-2·K-1) |
---|---|---|---|
2.726 | 4.047 | 2.796 | 1.083 |
1.506 | 2.132 | 1.699 | 0.869 |
1.584 | 2.621 | 1.841 | 0.595 |
2.678 | 4.338 | 2.524 | 0.636 |
平均影响因子 | 0.515 | 0.354 | 0.131 |
表2 不同换热过程平均传热系数对比
Table 2 Comparison of average heat transfer coefficients in different heat transfer processes
总过程平均传热系数/(kW·m-2·K-1) | 干涸前平均传热系数/(kW·m-2·K-1) | 干涸过程平均传热系数/(kW·m-2·K-1) | 干涸后平均传热系数/(kW·m-2·K-1) |
---|---|---|---|
2.726 | 4.047 | 2.796 | 1.083 |
1.506 | 2.132 | 1.699 | 0.869 |
1.584 | 2.621 | 1.841 | 0.595 |
2.678 | 4.338 | 2.524 | 0.636 |
平均影响因子 | 0.515 | 0.354 | 0.131 |
1 | 司春强, 刘小朋, 林楚桂, 等 . 跨临界CO2制冷循环火用分析[J]. 节能技术, 2012, 30(5): 455-457. |
Si C Q , Liu X P , Lin C G , et al . Exergy analysis of cross - critical CO2 refrigeration cycle [J]. Energy-saving Technology, 2012, 30(5): 455-457. | |
2 | 廖小花, 陈海平, 李京茂 . IGCC系统控制CO2排放的研究进展[J]. 节能技术, 2010, 28(5): 458-462. |
Liao X H , Chen H P , Li J M . Research progress of IGCC system for CO2 emission control[J]. Energy-saving Technology, 2010, 28(5): 458-462. | |
3 | 金听祥, 徐冉, 李改莲, 等 . HFO-1234yf在空调系统中应用研究进展[J]. 制冷技术, 2014, 42(5): 63-69. |
Jin T X , Xu R , Li G L , et al . Advances in the application of HFO-1234yf in air-conditioning system[J]. Refrigeration Technique, 2014, 42(5): 63-69. | |
4 | Nguyen B C , Pham Q V , Kwang-I 1 C, et al . Boiling heat transfer of R32, CO2 and R290 inside horizontal minichannel [J]. Energy Procedia, 2017, 105: 4822-4827. |
5 | Wang R Z , Li Y . Perspectives for natural working fluids in China[J]. International Journal of Refrigeration, 2007, (30): 568-581. |
6 | Dang C B , Haraguchi N , Hihara E . Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube[J]. Int. J. Refrigeration, 2010, 33(4): 655-663. |
7 | 马虎根, 胡自成 . 非共沸混合物微通道内流动沸腾特性[J]. 化工学报, 2006, 57(3): 526-529. |
Ma H G , Hu Z C . Flow boiling characteristics of non azeotropic mixtures in microchannels[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(3): 526-529. | |
8 | Wei L , Zan W . A general correlation for evaporative heat transfer in micro/mini-channels[J]. International Journal of Heat and Mass Transfer, 2010, 53(4): 1778-1787. |
9 | Ducoulombie M , Colasson S . Carbon dioxide flow boiling in a single microchannel(Ⅰ): Heat transfer[J]. Experimental Thermal and Fluid Science, 2011, 35(4): 597-611. |
10 | 付涛涛, 朱春英, 王东继 . 微通道内气液传质特性[J]. 化工进展, 2011, 30(s2): 95-98. |
Fu T T , Zhu C Y , Wang D J . Gas-liquid mass transfer characteristics in microchannels[J]. Chemical Industry and Engineering Progress, 2011, 30(s2): 95-98. | |
11 | 胡静, 杨俊兰, 杜明星 . CO2-润滑油水平光滑管内流动芬腾换热特性[J]. 煤气与热力, 2013, 4(4): 13-17. |
Hu J , Yang J L , Du M X . Fenten heat transfer characteristics of CO2- lubricating oil flowing in horizontal smooth pipe[J]. Gas and Heat, 2013, 4(4): 13-17. | |
12 | 许文杰, 李敏霞, 郭强 . 润滑油对超临界二氧化碳对流换热特性的影响[J]. 化工学报, 2018, 69(5): 1982-1988. |
Xu W J , Li M X , Guo Q . Influence of lubricating oil on supercritical carbon dioxide convection heat transfer characteristics[J]. CIESC Journal, 2018, 69(5): 1982-1988. | |
13 | Dang C B , Haraguchi N , Yamada T . Effect of lubricant oil on boiling heat transfer of carbon dioxide[C]//Proceeding of 7th IR-Gustav Lorentzen Conference.Trondheim, Norway, 2006: 495-498. |
14 | Dang C B , Haraguchi N , Yamada T , et al . Effect of lubricating oil on flow boiling heat transfer of carbon dioxide[J]. International Journal of Refrigeration, 2013, 36(1): 136-144. |
15 | Li M X , Dang C B , Hihara E . Flow boiling heat transfer of carbon dioxide with PAG-type lubricating oil in pre-dryout region inside horizontal tube[J]. International Journal of Refrigeration, 2014, 41(5): 45-49. |
16 | Wetzel M , Dietrich B , Wetzel T . Influence of oil on heat transfer and pressure drop during flow boiling of CO2 at low temperatures[J]. Experimental Thermal and Fluid Science, 2014, 59: 202-212. |
17 | Gao L , Honda T , Koyama S . Experiments on flow boiling heat transfer of almost pure CO2 and CO2-oil mixtures in horizontal smooth and microfin tubes[J]. HVAC&R Research, 2007, 13(3): 415-425. |
18 | Gao L , Honda T . Flow and heat transfer characteristics of refrigerant and PAG oil in the evaporator of a CO2 heat pump system[C]//Proceedings of 7th ǁR-Gustav Lorentzen Conference.Trondheim, Norway, 2006: 491-494. |
19 | Zhao Y , Molki M , Ohadi M M , et al . Flow boiling of CO2 with miscible oil in microchannels[J]. ASHRA Transactions, 2002, 108: 135-144. |
20 | Bansal P . In-tube boiling heat transfer of CO2-lubricant mixture at low temperatures: preliminary results[J]. ASHRAE Transactions, 2011, 117: 186-194. |
21 | Ono T , Gao L , Honda T . Heat transfer and flow characteristics of flow boiling of CO2-oil mixtures in horizontal smooth and micro-fin tubes[J]. Heat Transfer—Asian Research, 2010, 39(3): 195-207. |
22 | Dong H W , Young S C . The Effect of lubricant oil concentration on the performance of a gas cooler using carbon dioxide[J]. Journal of Thermal Science and Technology, 2012, 7(4): 577-588. |
23 | 吴昊, 柳建华, 张良, 等 . CO2微细通道流动沸腾换热干涸特性[J]. 化工学报, 2015, 66(5): 1676-1682. |
Wu H , Liu J H , Zhang L , et al . Characteristics of CO2 micro-channel flow boiling heat transfer and drying[J]. CIESC Journal, 2015, 66(5): 1676-1682. | |
24 | Dang C B , Lino K , Fukuoka K , et al . Effect of lubricating oil on cooling heat transfer of supercritical carbon dioxide[J]. International Journal of Refrigeration, 2007, 30(4): 724-731. |
25 | Dang C B , Lino K , Hihara E . Study on two-phase flow pattern of supercritical carbon dioxide with entrained PAG-type lubricating oil in a gas cooler[J]. International Journal of Refrigeration, 2008, 31(7): 1265-1272. |
26 | Dang C B , Hoshika K , Hihara E . Effect of lubricating oil on the flow and heat-transfer characteristics of supercritical carbon dioxide[J]. International Journal of Refrigeration, 2012, 35(5): 1410-1417. |
27 | Dang C B , Hihara E . Predicting the cooling heat transfer coefficient of supercritical CO2 with a small amount of entrained lubricating oil by using the neural network method[J]. International Journal of Refrigeration, 2012, 35(4): 1130-1138. |
28 | Mehendale S S , Tacobi A M , Shah R K , et al . Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design[J]. Applied Mechanics Reviews, 2000, 53(7): 175-193. |
29 | 胡海涛 . R410A-润滑油混合物管内流动沸腾换热和压降特性的研究[D]. 上海: 上海交通大学, 2008: 24-28. |
Hu H T . Study on flow boiling heat transfer and pressure drop characteristics in R410A- lubricating oil mixture[D]. Shanhai: Shanghai Jiao Tong University, 2008: 24-28. | |
30 | Ayad F , Benelmir R , Souayed A . CO2 evaporators design for vehicle HVAC operation[J]. Applied Thermal Engineering, 2012, 36: 330-344. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 203
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 465
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||