化工学报 ›› 2020, Vol. 71 ›› Issue (1): 16-25.DOI: 10.11949/0438-1157.20191288
收稿日期:
2019-10-30
修回日期:
2019-11-13
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
王键吉
作者简介:
崔国凯(1984—),男,博士,副教授,基金资助:
Guokai CUI(),Shuzhen LYU,Jianji WANG
Received:
2019-10-30
Revised:
2019-11-13
Online:
2020-01-05
Published:
2020-01-05
Contact:
Jianji WANG
摘要:
吸收及分离二氧化碳是降低碳排放和应对全球气候变化的主要策略之一,这就必然要求全球科技工作者注重开发具有选择性高效吸收分离二氧化碳的新材料和新路线。作为近20多年来发展的一类代表性的新材料,离子液体(尤其是功能化离子液体)具有独特的物理化学性质,例如几乎没有蒸气压、液态温度范围大、热稳定性和化学稳定性好、电化学窗口宽、不可燃、结构-性质可调控等。这些性质使离子液体在二氧化碳吸收及分离领域受到广泛关注。重点综述了近5年(2015~2019)来功能化离子液体吸收分离二氧化碳的研究进展, 主要内容包括单位点离子液体、多位点离子液体、基于功能化离子液体的混合物、功能化离子液体杂化材料对二氧化碳的吸收分离。同时, 对目前该领域的发展所面临的主要问题和进一步的研究工作进行了分析讨论。
中图分类号:
崔国凯,吕书贞,王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25.
Guokai CUI,Shuzhen LYU,Jianji WANG. Functional ionic liquids for carbon dioxide capture and separation[J]. CIESC Journal, 2020, 71(1): 16-25.
1 | 2018中国生态环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2019: 51. |
China Ecological Environment Status Bulletin in 2018[R]. Beijing: Ministry of Ecology and Environment of the People s Republic of China, 2019: 51. | |
2 | Global Energy & CO2 Status Report 2018[R]. Paris: International Energy Agency, 2019: 9. |
3 | Chen H , Tsai T C , Tan C S . CO2 capture using amino acid sodium salt mixed with alkanolamines[J]. Int. J. Greenhouse Gas Control, 2018, 79: 127-133. |
4 | Lei Z , Chen B , Koo Y M , et al . Introduction: ionic liquids[J]. Chem. Rev., 2017, 117(10): 6633-6635. |
5 | 王键吉, 卓克垒 . 绿色溶剂[M]. 北京: 科学出版社, 2018: 127. |
Wang J J , Zhuo K L . Green Solvents[M]. Beijing: Science Press, 2018: 127. | |
6 | Huang Y , Zhang Y , Xing H . Separation of light hydrocarbons with ionic liquids: a review[J]. Chin. J. Chem. Eng., 2019, 27(6): 1374-1382. |
7 | 姚加, 王冠淇, 陈航, 等 . 螯合型离子液体: 合成、性质以及应用[J]. 化工学报, 2018, 69(1): 203-217. |
Yao J , Wang G Q , Chen H , et al . Chelate ionic liquids: synthesis, properties and applications[J]. CIESC Journal, 2018, 69(1): 203-217. | |
8 | Yang Q , Zhang Z , Sun X G , et al . Ionic liquids and derived materials for lithium and sodium batteries[J]. Chem. Soc. Rev., 2018, 47(6): 2020-2064. |
9 | Yoo C G , Pu Y , Ragauskas A J . Ionic liquids: promising green solvents for lignocellulosic biomass utilization[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 5: 5-11. |
10 | Watanabe M , Thomas M L , Zhang S , et al . Application of ionic liquids to energy storage and conversion materials and devices[J]. Chem. Rev., 2017, 117(10): 7190-7239. |
11 | 王慧勇, 李虹培, 崔国凯, 等 . 离子液体表面活性剂在水溶液中的自组装及其调控研究进展[J]. 物理化学学报, 2016, 32(1): 249-260. |
Wang H Y , Li H P , Cui G K , et al . Recent progress in self-assembly of ionic liquid surfactants and its regulation and control in aqueous solutions[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 249-260. | |
12 | 崔国凯, 赵宁, 张峰涛, 等 . 离子液体捕集二氧化硫气体的研究进展[J]. 科学通报, 2016, 61(28/29): 3115-3126. |
Cui G K , Zhao N , Zhang F T , et al . Progress in SO2 capture by ionic liquids[J]. Chinese Sci. Bull., 2016, 61(28/29): 3115-3126. | |
13 | Ren S , Hou Y , Zhang K , et al . Ionic liquids: functionalization and absorption of SO2 [J]. Green Energy & Environment, 2018, 3(3): 179-190. |
14 | Li R , Zhao Y , Chen Y , et al . Imidazolate ionic liquids for high-capacity capture and reliable storage of iodine[J]. Communications Chemistry, 2018, 1(1): 69. |
15 | Egorova K S , Gordeev E G , Ananikov V P . Biological activity of ionic liquids and their application in pharmaceutics and medicine[J]. Chem. Rev., 2017, 117(10): 7132-7189. |
16 | Zeng S , Zhang X , Bai L , et al . Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chem. Rev., 2017, 117(14): 9625-9673. |
17 | Bui M , Adjiman C S , Bardow A , et al . Carbon capture and storage (CCS): the way forward[J]. Energy Environ. Sci., 2018, 11(5): 1062-1176. |
18 | Cui G , Wang J , Zhang S . Active chemisorption sites in functionalized ionic liquids for carbon capture[J]. Chem. Soc. Rev., 2016, 45(15): 4307-4339. |
19 | Yang Q , Wang Z , Bao Z , et al . New insights into CO2 absorption mechanisms with amino-acid ionic liquids[J]. ChemSusChem, 2016, 9(8): 806-812. |
20 | Luo X Y , Fan X , Shi G L , et al . Decreasing the viscosity in CO2 capture by amino-functionalized ionic liquids through the formation of intramolecular hydrogen bond[J]. J. Phys. Chem. B, 2016, 120(10): 2807-2813. |
21 | 张慧, 张红梅, 沈锦优, 等 . 氨基功能型离子液体吸收CO2的性能[J]. 化工学报, 2016, 67(12): 5057-5065. |
Zhang H , Zhang H M , Shen J Y , et al . Absorption performance of CO2 in amino-functionalized task-specific ionic liquids[J]. CIESC Journal, 2016, 67(12): 5057-5065. | |
22 | Vijayaraghavan R , Oncsik T , Mitschke B , et al . Base-rich diamino protic ionic liquid mixtures for enhanced CO2 capture[J]. Sep. Purif. Technol., 2018, 196: 27-31. |
23 | Lin W , Pan M , Xiao Q , et al . Tuning the capture of CO2 through entropic effect induced by reversible trans-cis isomerization of light-responsive ionic liquids[J]. J. Phys. Chem. Lett., 2019, 10(12): 3346-3351. |
24 | Zhu X , Song M , Xu Y . DBU-based protic ionic liquids for CO2 capture[J]. ACS Sustainable Chem. Eng., 2017, 5(9): 8192-8198. |
25 | Xu Y . CO2 absorption behavior of azole-based protic ionic liquids: influence of the alkalinity and physicochemical properties[J]. J. CO2 Util., 2017, 19: 1-8. |
26 | Gao F , Wang Z , Ji P , et al . CO2 absorption by DBU-based protic ionic liquids: basicity of anion dictates the absorption capacity and mechanism[J]. Frontiers in Chemistry, 2019, 6: 658. |
27 | Li F , Bai Y , Zeng S , et al . Protic ionic liquids with low viscosity for efficient and reversible capture of carbon dioxide[J]. Int. J. Greenhouse Gas Control, 2019, 90: 102801. |
28 | Cui G , Zhao N , Wang J , et al . Computer-assisted design of imidazolate-based ionic liquids for improving sulfur dioxide capture, carbon dioxide capture, and sulfur dioxide/carbon dioxide selectivity[J]. Chem.-Asian J., 2017, 12(21): 2863-2872. |
29 | Taylor S F R , McClung M , McReynolds C , et al . Understanding the competitive gas absorption of CO2 and SO2 in superbase ionic liquids[J]. Ind. Eng. Chem. Res., 2018, 57(50): 17033-17042. |
30 | Sheridan Q R , Oh S , Morales-Collazo O , et al . Liquid structure of CO2-reactive aprotic heterocyclic anion ionic liquids from X-ray scattering and molecular dynamics[J]. J. Phys. Chem. B, 2016, 120(46): 11951-11960. |
31 | Sheridan Q R , Mullen R G , Lee T B , et al . Hybrid computational strategy for predicting CO2 solubilities in reactive ionic liquids[J]. J. Phys. Chem. C, 2018, 122(25): 14213-14221. |
32 | Mullen R G , Corcelli S A , Maginn E J . Reaction ensemble Monte Carlo simulations of CO2 absorption in the reactive ionic liquid triethyl(octyl)phosphonium 2-cyanopyrrolide[J]. J. Phys. Chem. Lett., 2018, 9(18): 5213-5218. |
33 | Sheridan Q R , Schneider W F , Maginn E J . Role of molecular modeling in the development of CO2-reactive ionic liquids[J]. Chem. Rev., 2018, 118(10): 5242-5260. |
34 | Firaha D S , Hollóczki O , Kirchner B . Computer-aided design of ionic liquids as CO2 absorbents[J]. Angew. Chem., Int. Ed., 2015, 54(27): 7805-7809. |
35 | Goel H , Windom Z W , Jackson A A , et al . CO2 sorption in triethyl(butyl)phosphonium 2-cyanopyrrolide ionic liquid via first principles simulations[J]. J. Mol. Liq., 2019, 292: 111323. |
36 | Pan M , Cao N , Lin W , et al . Reversible CO2 capture by conjugated ionic liquids through dynamic covalent carbon-oxygen bonds[J]. ChemSusChem, 2016, 9(17): 2351-2357. |
37 | Zhang X M , Huang K , Xia S , et al . Low-viscous fluorine-substituted phenolic ionic liquids with high performance for capture of CO2 [J]. Chem. Eng. J., 2015, 274: 30-38. |
38 | Oh S , Morales-Collazo O , Brennecke J F . Cation-anion interactions in 1-ethyl-3-methylimidazolium-based ionic liquids with aprotic heterocyclic anions (AHAs)[J]. J. Phys. Chem. B, 2019, 123(39): 8274-8284. |
39 | Hu J , Chen L , Shi M , et al . A quantum chemistry study for 1-ethyl-3-methylimidazolium ion liquids with aprotic heterocyclic anions applied to carbon dioxide absorption[J]. Fluid Phase Equilib., 2018, 459: 208-218. |
40 | Mei K , He X , Chen K , et al . Highly efficient CO2 capture by imidazolium ionic liquids through a reduction in the formation of the carbene-CO2 complex[J]. Ind. Eng. Chem. Res., 2017, 56(28): 8066-8072. |
41 | Makino T , Umecky T , Kanakubo M . CO2 absorption properties and mechanisms for 1-ethyl-3-methylimidazolium ether-functionalized carboxylates[J]. Ind. Eng. Chem. Res., 2016, 55(50): 12949-12961. |
42 | Lee T B , Oh S , Gohndrone T R , et al . CO2 chemistry of phenolate-based ionic liquids[J]. J. Phys. Chem. B, 2016, 120(8): 1509-1517. |
43 | Zhang X , Xiong W , Tu Z , et al . Supported ionic liquid membranes with dual-site interaction mechanism for efficient separation of CO2 [J]. ACS Sustainable Chem. Eng., 2019, 7(12): 10792-10799. |
44 | 陈凤凤, 董艳, 桑晓燕, 等 . 四丁基季 羧酸盐离子液体的物理化学性质与CO2溶解度[J]. 物理化学学报, 2016, 32(3): 605-610. |
Chen F F , Dong Y , Sang X Y , et al . Physicochemical properties and CO2 solubility of tetrabutylphosphonium carboxylate ionic liquids[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 605-610. | |
45 | 陈凯宏, 梅柯, 李浩然, 等 . 肉桂酸型离子液体的合成及其二氧化碳吸收[J]. 化工学报, 2016, 67(2): 623-626. |
Chen K H , Mei K , Li H R , et al . Synthesis of cinnamic acid-based ionic liquids and application in CO2 absorption[J] CIESC Journal, 2016, 67(2): 623-626. | |
46 | Umecky T , Abe M , Takamuku T , et al . CO2 absorption features of 1-ethyl-3-methylimidazolium ionic liquids with 2, 4-pentanedionate and its fluorine derivatives[J]. J. CO2 Util., 2019, 31: 75-84. |
47 | Zhou Z , Zhou X , Jing G , et al . Evaluation of the multi-amine functionalized ionic liquid for efficient postcombustion CO2 capture[J]. Energy Fuels, 2016, 30(9): 7489-7495. |
48 | Huang Y , Cui G , Zhao Y , et al . Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids[J]. Angew. Chem., Int. Ed., 2017, 56(43): 13293-13297. |
49 | 韩布兴 . 预组织与协同策略助力离子液体高效可逆捕集低浓度二氧化碳[J]. 物理化学学报, 2018, 34(5): 451-452. |
Han B X . Preorganization and cooperation strategy for highly efficient and reversible capture of low-concentration CO2 using ionic liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 451-452. | |
50 | Huang Y , Cui G , Wang H , et al . Tuning ionic liquids with imide-based anions for highly efficient CO2 capture through enhanced cooperations[J]. J. CO2 Util., 2018, 28: 299-305. |
51 | Huang Y , Cui G , Wang H , et al . Absorption and thermodynamic properties of CO2 by amido-containing anion-functionalized ionic liquids[J]. RSC Adv., 2019, 9(4): 1882-1888. |
52 | An X , Du X , Duan D , et al . An absorption mechanism and polarity-induced viscosity model for CO2 capture using hydroxypyridine-based ionic liquids[J]. Phys. Chem. Chem. Phys., 2017, 19(2): 1134-1142. |
53 | Luo X Y , Chen X Y , Qiu R X , et al . Enhanced CO2 capture by reducing cation-anion interactions in hydroxyl-pyridine anion-based ionic liquids[J]. Dalton Trans., 2019, 48(7): 2300-2307. |
54 | Luo X Y , Lv X Y , Shi G L , et al . Designing amino-based ionic liquids for improved carbon capture: one amine binds two CO2 [J]. AIChE J., 2019, 65(1): 230-238. |
55 | Pan M , Vijayaraghavan R , Zhou F , et al . Enhanced CO2 uptake by intramolecular proton transfer reactions in amino-functionalized pyridine-based ILs[J]. Chem. Commun., 2017, 53(44): 5950-5953. |
56 | Zhang Z , Zhang L , He L , et al . Is it always chemical when amino groups come across CO2? Anion-anion-interaction-induced inhibition of chemical adsorption[J]. J. Phys. Chem. B, 2019, 123(30): 6536-6542. |
57 | Chen F F , Huang K , Zhou Y , et al . Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids[J]. Angew. Chem., Int. Ed., 2016, 55(25): 7166-7170. |
58 | Wu Y , Zhao Y , Li R , et al . Tetrabutylphosphonium-based ionic liquid catalyzed CO2 transformation at ambient conditions: a case of synthesis of α-alkylidene cyclic carbonates[J]. ACS Catalysis, 2017, 7(9): 6251-6255. |
59 | Pan M , Zhao Y , Zeng X , et al . Efficient absorption of CO2 by introduction of intramolecular hydrogen bonding in chiral amino acid ionic liquids[J]. Energy Fuels, 2018, 32(5): 6130-6135. |
60 | Lin W , Cai Z , Lv X , et al . Significantly enhanced carbon dioxide capture by anion-functionalized liquid pillar[5]arene through multiple-site interactions[J]. Ind. Eng. Chem. Res., 2019, 58(36): 16894-16900. |
61 | Qian W , Xu Y , Xie B , et al . Alkanolamine-based dual functional ionic liquids with multidentate cation coordination and pyrazolide anion for highly efficient CO2 capture at relatively high temperature[J]. Int. J. Greenhouse Gas Control, 2017, 56: 194-201. |
62 | Li R , Zhao Y , Li Z , et al . Choline-based ionic liquids for CO2 capture and conversion[J]. Sci. China Chem., 2019, 62(2): 256-261. |
63 | Vafaeezadeh M , Aboudi J , Hashemi M M . A novel phenolic ionic liquid for 1.5 molar CO2 capture: combined experimental and DFT studies[J]. RSC Adv., 2015, 5(71): 58005-58009. |
64 | Bhattacharyya S , Filippov A , Shah F U . High CO2 absorption capacity by chemisorption at cations and anions in choline-based ionic liquids[J]. Phys. Chem. Chem. Phys., 2017, 19(46): 31216-31226. |
65 | Oncsik T , Vijayaraghavan R , MacFarlane D R . High CO2 absorption by diamino protic ionic liquids using azolide anions[J]. Chem. Commun., 2018, 54(17): 2106-2109. |
66 | Zhao T , Zhang X , Tu Z , et al . Low-viscous diamino protic ionic liquids with fluorine-substituted phenolic anions for improving CO2 reversible capture[J]. J. Mol. Liq., 2018, 268: 617-624. |
67 | 周作明, 郭冰松, 吕碧洪, 等 . 氨基酸离子液体水溶液吸收及解吸二氧化碳机理[J]. 中国科学: 化学, 2015, 45(7): 747-754. |
Zhou Z M , Guo B S , Lyu B H , et al . Absorption/desorption mechanism of carbon dioxide capture into amino acid ionic liquid aqueous solution[J]. Sci. China Chem., 2015, 45(7): 747-754. | |
68 | Li B , Chen Y , Yang Z , et al . Thermodynamic study on carbon dioxide absorption in aqueous solutions of choline-based amino acid ionic liquids[J]. Sep. Purif. Technol., 2019, 214: 128-138. |
69 | Filippov A , Antzutkin O N , Shah F U . Reactivity of CO2 with aqueous choline-based ionic liquids probed by solid-state NMR spectroscopy[J]. J. Mol. Liq., 2019, 286: 110918. |
70 | Chen Y , Guo K , Huangpu L . Experiments and modeling of absorption of CO2 by amino-cation and amino-anion dual functionalized ionic liquid with the addition of aqueous medium[J]. J. Chem. Eng. Data, 2017, 62(11): 3732-3743. |
71 | Jing G , Qian Y , Zhou X , et al . Designing and screening of multi-amino-functionalized ionic liquid solution for CO2 capture by quantum chemical simulation[J]. ACS Sustainable Chem. Eng., 2018, 6(1): 1182-1191. |
72 | 夏裴文, 王强, 张鹏军, 等 . 功能化离子液体的合成及对CO2的吸收[J]. 化学工程, 2019, 47(1): 37-41. |
Xia P W , Wang Q , Zhang P J , et al . Synthesis of functional ionic liquid and application in CO2 absorption[J]. Chem. Eng. (China), 2019, 47(1): 37-41. | |
73 | Yamada H . Comparison of solvation effects on CO2 capture with aqueous amine solutions and amine-functionalized ionic liquids[J]. J. Phys. Chem. B, 2016, 120(40): 10563-10568. |
74 | Li W , Wen S , Shen L , et al . Mechanism and kinetic study of carbon dioxide absorption into a methyldiethanolamine/1-hydroxyethyl-3-methylimidazolium lysine/water system[J]. Energy Fuels, 2018, 32(10): 10813-10821. |
75 | Wang L , Tian X , Fang C , et al . Analysis of surface thermodynamics for amino acid ionic liquid–1-dimethylamino-2-propanol aqueous blends[J]. J. Chem. Eng. Data, 2019, 64(8): 3661-3667. |
76 | Huang Y , Cui G , Zhao Y , et al . Reply to the correspondence on “Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids”[J]. Angew. Chem., Int. Ed., 2019, 58(2): 386-389. |
77 | Simon N M , Zanatta M , dos Santos F P , et al . Carbon dioxide capture by aqueous ionic liquid solutions[J]. ChemSusChem, 2017, 10(24): 4927-4933. |
78 | Avelar B G M , Morales-Collazo O , Brennecke J F . Effect of water on CO2 capture by aprotic heterocyclic anion (AHA) ionic liquids[J]. ACS Sustainable Chem. Eng., 2019, 7(19): 16858-16869. |
79 | Wu J , Lv B , Wu X , et al . Aprotic heterocyclic anion-based dual-functionalized ionic liquid solutions for efficient CO2 uptake: quantum chemistry calculation and experimental research[J]. ACS Sustainable Chem. Eng., 2019, 7(7): 7312-7323. |
80 | Zhang K , Hou Y , Wang Y , et al . Efficient and reversible absorption of CO2 by functional deep eutectic solvents[J]. Energy Fuels, 2018, 32(7): 7727-7733. |
81 | Cui G , Lv M , Yang D . Efficient CO2 absorption by azolide-based deep eutectic solvents[J]. Chem. Commun., 2019, 55(10): 1426-1429. |
82 | Cui G , Liu J , Lyu S , et al . Efficient and reversible SO2 absorption by environmentally friendly task-specific deep eutectic solvents of PPZBr + Gly[J]. ACS Sustainable Chem. Eng., 2019, 7(16): 14236-14246. |
83 | Chen F F , Huang K , Fan J P , et al . Chemical solvent in chemical solvent: a class of hybrid materials for effective capture of CO2 [J]. AIChE J., 2018, 64(2): 632-639. |
84 | Wu N , Ji X , Xie W , et al . Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports[J]. Langmuir, 2017, 33(42): 11719-11726. |
85 | Balsamo M , Erto A , Lancia A , et al . Post-combustion CO2 capture: on the potentiality of amino acid ionic liquid as modifying agent of mesoporous solids[J]. Fuel, 2018, 218: 155-161. |
86 | Uehara Y , Karami D , Mahinpey N . Roles of cation and anion of amino acid anion-functionalized ionic liquids immobilized into a porous support for CO2 capture[J]. Energy Fuels, 2018, 32(4): 5345-5354. |
87 | Zhang L , Xiao L , Zhang Y , et al . Synthesis of ionic liquid-SBA-15 composite materials and their application for SO2 capture from flue gas[J]. Energy Fuels, 2018, 32(1): 678-687. |
88 | Li Y , Li L , Yu J . Applications of zeolites in sustainable chemistry[J]. Chem, 2017, 3(6): 928-949. |
89 | Wu Q , Ma Y , Wang S , et al . 110th anniversary: sustainable synthesis of zeolites: from fundamental research to industrial production[J]. Ind. Eng. Chem. Res., 2019, 58(27): 11653-11658. |
90 | Kinik F P , Uzun A , Keskin S . Ionic liquid/metal-organic framework composites: from synthesis to applications[J]. ChemSusChem, 2017, 10(14): 2842-2863. |
91 | Luo Q X , An B W , Ji M , et al . Hybridization of metal-organic frameworks and task-specific ionic liquids: fundamentals and challenges[J]. Materials Chemistry Frontiers, 2018, 2(2): 219-234. |
92 | Fujie K , Kitagawa H . Ionic liquid transported into metal-organic frameworks[J]. Coord. Chem. Rev., 2016, 307: 382-390. |
93 | Zeng Y , Zou R , Zhao Y . Covalent organic frameworks for CO2 capture[J]. Adv. Mater., 2016, 28(15): 2855-2873. |
94 | Sharma A , Malani A , Medhekar N V , et al . CO2 adsorption and separation in covalent organic frameworks with interlayer slipping[J]. CrystEngComm, 2017, 19(46): 6950-6963. |
95 | Lohse M S , Bein T . Covalent organic frameworks: structures, synthesis, and applications[J]. Adv. Funct. Mater., 2018, 28(33): 1705553. |
96 | Guan P , Qiu J , Zhao Y , et al . A novel crystalline azine-linked three-dimensional covalent organic framework for CO2 capture and conversion[J]. Chem. Commun., 2019, 55: 12459-12462. |
97 | Zhang W , Gao E , Li Y , et al . CO2 capture with polyamine-based protic ionic liquid functionalized mesoporous silica[J]. J. CO2 Util., 2019, 34: 606-615. |
98 | Uehara Y , Karami D , Mahinpey N . CO2 adsorption using amino acid ionic liquid-impregnated mesoporous silica sorbents with different textural properties[J]. Microporous Mesoporous Mater., 2019, 278: 378-386. |
99 | Cheng J , Li Y , Hu L , et al . CO2 adsorption performance of ionic liquid [P66614][2-Op] loaded onto molecular sieve MCM-41 compared to pure ionic liquid in biohythane/pure CO2 atmospheres[J]. Energy Fuels, 2016, 30(4): 3251-3256. |
100 | 李艳南, 程军, 刘建忠, 等 . 分子筛SBA-15 负载离子液体[P66614][Triz]脱除氢烷气中CO2 [J]. 化工学报, 2018, 69(6): 2526-2532. |
Li Y N , Cheng J , Liu J Z , et al . CO2 removal from biohythane by absorption in ionic liquid [P66614][Triz] loaded on molecular sieve SBA-15[J]. CIESC Journal, 2018, 69(6): 2526-2532. | |
101 | Cheng J , Li Y , Hu L , et al . CO2 absorption and diffusion in ionic liquid [P66614][Triz] modified molecular sieves SBA-15 with various pore lengths[J]. Fuel Process. Technol., 2018, 172: 216-224. |
102 | Hiremath V , Jadhav A H , Lee H , et al . Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica[J]. Chem. Eng. J., 2016, 287: 602-617. |
103 | Chen C , Feng N , Guo Q , et al . Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: synergistic effect between multiple active sites[J]. J. Colloid Interface Sci., 2018, 521: 91-101. |
104 | Mohamedali M , Henni A , Ibrahim H . Markedly improved CO2 uptake using imidazolium-based ionic liquids confined into HKUST-1 frameworks[J]. Microporous Mesoporous Mater., 2019, 284: 98-110. |
105 | Maurya M , Singh J K . Effect of ionic liquid impregnation in highly water-stable metal-organic frameworks, covalent organic frameworks, and carbon-based adsorbents for post-combustion flue gas treatment[J]. Energy Fuels, 2019, 33(4): 3421-3428. |
106 | Xia X , Hu G , Li W , et al . Understanding reduced CO2 uptake of ionic liquid/metal-organic framework (IL/MOF) composites[J]. ACS Applied Nano Materials, 2019, 2(9): 6022-6029. |
107 | Xue C , Feng L , Zhang Q , et al . High and fast carbon dioxide capture of hydroxypyridine-based ionogel depending on pore structure of mesoporous silica vesicle in the simulated flue gas[J]. Int. J. Greenhouse Gas Control, 2019, 84: 111-120. |
108 | Moya C , Alonso-Morales N , Gilarranz M A , et al . Encapsulated ionic liquids for CO2 capture: using 1-butyl-methylimidazolium acetate for quick and reversible CO2 chemical absorption[J]. ChemPhysChem, 2016, 17(23): 3891-3899. |
109 | Santiago R , Lemus J , Moya C , et al . Encapsulated ionic liquids to enable the practical application of amino acid-based ionic liquids in CO2 capture[J]. ACS Sustainable Chem. Eng., 2018, 6(11): 14178-14187. |
110 | Moya C , Alonso-Morales N , de Riva J , et al . Encapsulation of ionic liquids with an aprotic heterocyclic anion (AHA-IL) for CO2 capture: preserving the favorable thermodynamics and enhancing the kinetics of absorption[J]. J. Phys. Chem. B, 2018, 122(9): 2616-2626. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[6] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[7] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[8] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[9] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[12] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[13] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[14] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[15] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||