化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2423-2431.DOI: 10.11949/0438-1157.20191541
魏小兰1(),谢佩1,张雪钏1,王维龙2,陆建峰2,丁静2(
)
收稿日期:
2019-12-19
修回日期:
2020-03-09
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
丁静
作者简介:
魏小兰(1963—),女,教授, 基金资助:
Xiaolan WEI1(),Pei XIE1,Xuechuan ZHANG1,Weilong WANG2,Jianfeng LU2,Jing DING2(
)
Received:
2019-12-19
Revised:
2020-03-09
Online:
2020-05-05
Published:
2020-05-05
Contact:
Jing DING
摘要:
制备了NaCl-CaCl2、NaCl-KCl-CaCl2、NaCl-CaCl2-MgCl2、KCl-CaCl2-MgCl2、NaCl-KCl-MgCl2、NaCl-KCl-CaCl2-MgCl2六种氯化物熔盐材料。采用差示扫描量热法确定它们的低共熔点和组成,测量其比热容、密度、黏度等热物性。测试熔盐材料的质量损失曲线确定工作温度上限,根据测试的结果,对其储能密度进行计算。研究结果表明:NaCl-KCl-CaCl2-MgCl2熔盐材料熔点为380.3℃,流动性较好,工作温度范围为430~700℃,储能密度为625.1 J·cm-3,是六种熔盐中熔点最低、储能密度最大的熔盐,适合作为传热储热材料。NaCl-KCl-CaCl2熔盐熔点为503.8℃,工作温度范围为550~850℃,储能密度为559.9 J·cm-3,储能密度仅次于NaCl-KCl-CaCl2-MgCl2熔盐,适合作为高温储热熔盐材料。
中图分类号:
魏小兰, 谢佩, 张雪钏, 王维龙, 陆建峰, 丁静. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020, 71(5): 2423-2431.
Xiaolan WEI, Pei XIE, Xuechuan ZHANG, Weilong WANG, Jianfeng LU, Jing DING. Research on preparation and thermodynamic properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5): 2423-2431.
样品 | NaCl/%(mol) | CaCl2/%(mol) | KCl/%(mol) | MgCl2/%(mol) | 低共熔点温度/℃ | 相变潜热/(J·g-1) |
---|---|---|---|---|---|---|
NaCl-CaCl2 | 49.03 | 50.97 | 499.2 | 152.6 | ||
NaCl-CaCl2-KCl | 41.72 | 52.16 | 6.12 | 503.8 | 178.2 | |
NaCl-CaCl2-MgCl2 | 45.10 | 26.30 | 28.60 | 431 | 241.9 | |
KCl-CaCl2-MgCl2 | 11.63 | 59.79 | 28.58 | 427.3 | 166.9 | |
KCl-NaCl-MgCl2 | 33.70 | 17.80 | 48.50 | 383.5 | 199.3 | |
KCl-NaCl-CaCl2-MgCl2 | 31.80 | 6.00 | 16.80 | 45.70 | 380.3 | 228 |
表1 熔盐低共熔点组成与熔化温度
Table 1 Eutectic temperature and composition of six kinds of molten salt
样品 | NaCl/%(mol) | CaCl2/%(mol) | KCl/%(mol) | MgCl2/%(mol) | 低共熔点温度/℃ | 相变潜热/(J·g-1) |
---|---|---|---|---|---|---|
NaCl-CaCl2 | 49.03 | 50.97 | 499.2 | 152.6 | ||
NaCl-CaCl2-KCl | 41.72 | 52.16 | 6.12 | 503.8 | 178.2 | |
NaCl-CaCl2-MgCl2 | 45.10 | 26.30 | 28.60 | 431 | 241.9 | |
KCl-CaCl2-MgCl2 | 11.63 | 59.79 | 28.58 | 427.3 | 166.9 | |
KCl-NaCl-MgCl2 | 33.70 | 17.80 | 48.50 | 383.5 | 199.3 | |
KCl-NaCl-CaCl2-MgCl2 | 31.80 | 6.00 | 16.80 | 45.70 | 380.3 | 228 |
温度T/℃ | Na/Ca-Cl | Na/Ca/K-Cl | Na/Ca/Mg-Cl | K/Ca/Mg-Cl | Na/K/Mg-Cl | Na/K/Ca/Mg-Cl |
---|---|---|---|---|---|---|
420 | 1.044 | 1.061 | ||||
440 | 1.034 | 1.056 | ||||
460 | 1.028 | 1.032 | 1.046 | 1.059 | ||
480 | 1.040 | 1.049 | 1.059 | 1.062 | ||
500 | 1.045 | 1.068 | 1.071 | 1.066 | ||
550 | 0.758 | 0.865 | 1.045 | 1.108 | 1.097 | 1.076 |
600 | 0.870 | 0.887 | 1.053 | 1.121 | 1.137 | 1.090 |
650 | 0.923 | 0.971 | 1.059 | 1.116 | 1.176 | 1.105 |
平均比热容 | 0.850 | 0.908 | 1.045 | 1.082 | 1.083 | 1.072 |
表2 氯化物熔盐各温度下比热容cp的实验值/(J?g-1?K-1)
Table 2 Experimental values of heat capacity of six kinds of molten salts in different temperatures/(J?g-1?K-1)
温度T/℃ | Na/Ca-Cl | Na/Ca/K-Cl | Na/Ca/Mg-Cl | K/Ca/Mg-Cl | Na/K/Mg-Cl | Na/K/Ca/Mg-Cl |
---|---|---|---|---|---|---|
420 | 1.044 | 1.061 | ||||
440 | 1.034 | 1.056 | ||||
460 | 1.028 | 1.032 | 1.046 | 1.059 | ||
480 | 1.040 | 1.049 | 1.059 | 1.062 | ||
500 | 1.045 | 1.068 | 1.071 | 1.066 | ||
550 | 0.758 | 0.865 | 1.045 | 1.108 | 1.097 | 1.076 |
600 | 0.870 | 0.887 | 1.053 | 1.121 | 1.137 | 1.090 |
650 | 0.923 | 0.971 | 1.059 | 1.116 | 1.176 | 1.105 |
平均比热容 | 0.850 | 0.908 | 1.045 | 1.082 | 1.083 | 1.072 |
样品 | ρ/(g·cm-3) | R2 |
---|---|---|
NaCl-CaCl2 | ρ=2.17-4.02×10-4T | 0.99351 |
NaCl-CaCl2-KCl | ρ=2.20-4.41×10-4T | 0.98246 |
NaCl-CaCl2-MgCl2 | ρ=2.22-5.03×10-4T | 0.99794 |
NaCl-KCl-MgCl2 | ρ=2.21-7.12×10-4T | 0.99408 |
KCl-CaCl2-MgCl2 | ρ=1.89-3.83×10-4T | 0.99466 |
KCl-NaCl-CaCl2-MgCl2 | ρ=2.22-4.87×10-4T | 0.98266 |
表3 密度随温度变化的拟合公式
Table 3 Fitting formulas of densities of six kinds of molten salts as function of temperature
样品 | ρ/(g·cm-3) | R2 |
---|---|---|
NaCl-CaCl2 | ρ=2.17-4.02×10-4T | 0.99351 |
NaCl-CaCl2-KCl | ρ=2.20-4.41×10-4T | 0.98246 |
NaCl-CaCl2-MgCl2 | ρ=2.22-5.03×10-4T | 0.99794 |
NaCl-KCl-MgCl2 | ρ=2.21-7.12×10-4T | 0.99408 |
KCl-CaCl2-MgCl2 | ρ=1.89-3.83×10-4T | 0.99466 |
KCl-NaCl-CaCl2-MgCl2 | ρ=2.22-4.87×10-4T | 0.98266 |
样品 | μ/(mPa·s) | R2 |
---|---|---|
NaCl-CaCl2 | 0.99153 | |
NaCl-CaCl2-KCl | 0.99032 | |
NaCl-CaCl2-MgCl2 | 0.99347 | |
NaCl-KCl-MgCl2 | 0.97933 | |
KCl-CaCl2-MgCl2 | 0.99877 | |
KCl-NaCl-CaCl2-MgCl2 | 0.99146 |
表4 黏度随温度变化的拟合公式
Table 4 Fitting formulas of viscosities of six kinds of molten salts as function of temperature
样品 | μ/(mPa·s) | R2 |
---|---|---|
NaCl-CaCl2 | 0.99153 | |
NaCl-CaCl2-KCl | 0.99032 | |
NaCl-CaCl2-MgCl2 | 0.99347 | |
NaCl-KCl-MgCl2 | 0.97933 | |
KCl-CaCl2-MgCl2 | 0.99877 | |
KCl-NaCl-CaCl2-MgCl2 | 0.99146 |
样品 | cp/(J?g-1?K-1) | ρ/(g·cm-3) | Tm/K | Tlim/K | E/(J?cm-3) |
---|---|---|---|---|---|
NaCl-CaCl2 | 0.850 | 772.3 | 1073 | 460.0 | |
NaCl-CaCl2-KCl | 0.908 | 776.8 | 1123 | 559.9 | |
NaCl-CaCl2-MgCl2 | 1.045 | 704 | 973 | 505.5 | |
KCl-NaCl-MgCl2 | 1.083 | 656.5 | 923 | 475.6 | |
KCl-CaCl2-MgCl2 | 1.082 | 700.3 | 973 | 463.1 | |
KCl-NaCl-CaCl2-MgCl2 | 1.072 | 653.3 | 973 | 625.1 |
表5 储能密度计算数据及结果
Table 5 Properties and thermal energy storage density
样品 | cp/(J?g-1?K-1) | ρ/(g·cm-3) | Tm/K | Tlim/K | E/(J?cm-3) |
---|---|---|---|---|---|
NaCl-CaCl2 | 0.850 | 772.3 | 1073 | 460.0 | |
NaCl-CaCl2-KCl | 0.908 | 776.8 | 1123 | 559.9 | |
NaCl-CaCl2-MgCl2 | 1.045 | 704 | 973 | 505.5 | |
KCl-NaCl-MgCl2 | 1.083 | 656.5 | 923 | 475.6 | |
KCl-CaCl2-MgCl2 | 1.082 | 700.3 | 973 | 463.1 | |
KCl-NaCl-CaCl2-MgCl2 | 1.072 | 653.3 | 973 | 625.1 |
1 | Wu Y T, Li Y, Lu Y W, et al. Novel low melting point binary nitrates for thermal energy storage applications[J]. Sol. Energy Mater. Sol. Cells, 2017, 164(5): 114-121. |
2 | Zhao Y, Wang R Z, Wang L W, et al. Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage) [J]. Energy, 2014, 70(6): 272-277. |
3 | 高峰, 孙成权, 刘全根. 太阳能开发利用的现状及发展趋势[J]. 世界科技研究与发展, 2001, 23(4): 35-39. |
Gao F, Sun C Q, Liu Q G. The status and trends of solar energy utilization[J]. World Sci-Tech R & D, 2001, 23(4): 35-39. | |
4 | Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems—a review[J]. Applied Energy, 2015, 146(5): 383-396. |
5 | Kearney D, Herrmann U, Nava P, et al. Assessment of a molten heat transfer fluid in a parabolic trough solar field[J]. Journal of Solar Energy Engineering, 2003, 125(2): 170-176. |
6 | Herrmann U, Kelly B, Price H. Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy, 2004, 29(5/6): 883-893. |
7 | 王艳. 硝酸熔融盐蓄热过程中NOx的排放研究[D]. 广州: 华南理工大学, 2014. |
Wang Y. Study on NOx emission from nitrate molten salt during heat storage[D]. Guangzhou: South China University of Technology, 2014. | |
8 | Sergeev D, Kobertz D, Muller M. Thermodynamics of the NaCl-KCl system[J]. Thermochimica Acta, 2015, 606(4): 25-33. |
9 | Vignarooban K, Xu X H, Wang K, et al. Vapor pressure and corrosivity of ternary metal-chloride molten salt based heat transfer fluids for use in concentrating solar power systems[J]. Applied Energy, 2015, 159(C): 206-213. |
10 | Hofmeister M, Klein L, Miran H, et al. Corrosion behaviour of stainless steels and a single crystal super alloy in a ternary LiCl-KCl-CsCl molten salt[J]. Corrosion Science, 2015, 90(1): 46-53. |
11 | Wang K, Molina E, Dehghani G, et al. Experimental investigation to the properties of eutectic salts by NaCl-KCl-ZnCl2 for application as high temperature heat transfer fluids[C]//ASME 2014 8th International Conference on Energy Sustainability Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Boston, Massachusetts, USA: 2014. |
12 | Vignarooban K, Pugazhendhi P. Corrosion resistance of hastelloys in molten metal chloride heat transfer fluids for concentrating solar power applications[J]. Solar Energy, 2014, 103(6): 62-69. |
13 | Kuravi S, Trahan J, Goswami D Y, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Progress in Energy & Combustion Science, 2013, 39(4): 285-319. |
14 | Wei X L, Song M, Wang W L, et al. Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage[J]. Applied Energy, 2015, 156(10): 306-310. |
15 | 刘波, 魏小兰, 彭强, 等. 五元氯化物熔盐的制备及其传蓄热性能[J]. 太阳能学报, 2018, 39(7): 1815-1821. |
Liu B, Wei X L, Peng Q, et al. Research on preparation and properties of quinary chloride molten salt[J]. Journal of Solar Energy, 2018, 39(7): 1815-1821. | |
16 | Xu X K, Dehghani G, Ning J X, et al. Basic properties of eutectic chloride salts NaCl-KCl-ZnCl2 and NaCl-KCl-MgCl2 as HTFs and thermal storage media measured using simultaneous DSC-TGA[J]. Solar Energy, 2018, 162(C): 431-441. |
17 | Li Y Y, Xu X K, Wang X X, et al. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP[J]. Solar Energy, 2017, 152(8): 57-79. |
18 | Li P W, Molina E, Wang K, et al. Thermal and transport properties of NaCl-KCl-ZnCl2 eutectic salts for new generation high-temperature heat-transfer fluids[J]. Journal of Solar Energy Engineering, 2016, 138(5): 4501-4508. |
19 | 孙李平. 太阳能高温熔盐优选及腐蚀特性实验研究[D]. 北京: 北京工业大学, 2007. |
Sun L P. Experimental research on molten salt corrosion property and optimization[D]. Beijing: Beijing University of Engineering and Technology, 2007. | |
20 | 钟志强, 杨旺, 何建军. 三元氯化物熔盐制备及其传蓄热性能研究[J]. 广东化工, 2019, 46(3): 49-51. |
Zhong Z Q, Yang W, He J J. Research on preparation and properties of ternary chloride molten salt[J]. Guangdong Chemical Industry, 2019, 46(3): 49-51. | |
21 | Xu X K, Wang X X, Li P W, et al. Experimental test of properties of KCl-MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems[J]. J. Sol. Energy Eng., 2018, 140(5): 1011-1019. |
22 | 贺万玉. 混合氯化物熔盐的热物性及腐蚀性实验研究[D]. 北京: 北京建筑大学, 2016. |
He W Y. Study on thermophysical properties and corrosiveness of chloride molten salt[D]. Beijing: Beijing University of Architecture, 2016. | |
23 | Mohan G, Venkataraman M, Vidal J G, et al. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides[J]. Solar Energy, 2018, 176(C): 350-357. |
24 | 宋明, 魏小兰, 彭强, 等. 新型氯化物熔盐材料的设计及热稳定性研究[J]. 工程热物理学报, 2015, 36(2): 393-396. |
Song M, Wei X L, Peng Q, et al. Thermal stability of a new designed ternary chloride molten salt material[J]. Journal of Engineering Thermophysics, 2015, 36(2): 393-396. | |
25 | 廖敏, 丁静, 魏小兰, 等. 高温碳酸熔盐的制备及传热蓄热性质[J]. 无机盐工业, 2008, 40(10): 15-17. |
Liao M, Ding J, Wei X L, et al. Preparation and heat transfer and thermal storage property of high-temperature carbonate molten salt[J]. Inorganic Salt Industry, 2008, 40(10): 15-17. | |
26 | Janz G J, Allen C B, Bansal N P, et al. Physical properties data compilations relevant to enengy storageⅡmolten salts: data on single and multi-component salt systems[R]. Washington: US Government Printing Office, 1981. |
27 | 赵柏岑, 丁静, 魏小兰, 等. LiNO3-NaNO3-KNO3三元熔盐材料的设计及热稳定性研究[J]. 化工学报, 2019, 70(6): 2083-2091. |
Zhao B C, Ding J, Wei X L, et al. Design and thermal stability study of LiNO3-NaNO3-KNO3 ternary molten salt system[J]. CIESC Journal, 2019, 70(6): 2083-2091. | |
28 | Sora K, Gardiner J. Thermochermical Data of Pure Substances[M]. 3rd ed. New York: VCH Publishers, 1995, 426. |
29 | Williams D. Assessment of candidate molten salt coolants for the NGNP/NHI heat transfer loop[R]. Oak Ridge, TN, United States: Oak Ridge National Lab. (ORNL), 2006. |
30 | 丁静, 魏小兰, 彭强, 等. 中高温传热蓄热材料[M]. 北京: 科学出版社, 2013: 165. |
Ding J, Wei X L, Peng Q, et al. Medium and High Temperature Heat Transfer and Storage Materials[M]. Beijing: Science Press, 2013: 165. | |
31 | 傅崇说. 有色冶金原理[M]. 北京: 冶金工业出版社, 1993. |
Fu C S. Principles of Nonferrous Metallurgy[M]. Beijing: Metallurgical Industry Press, 1993. | |
32 | Zhang P, Cheng J H, Jin Y, et al. Evaluation of thermal physical properties of molten nitrate salts with low melting temperature[J]. Solar Energy Materials and Solar Cells, 2018, 176(3): 36-41. |
33 | 黄琼珠, 路贵民, 汪瑾, 等. MgCl2·6H2O热分解机理的研究[J]. 无机化学材料学报, 2010, 125(3): 306-310. |
Huang Q Z, Lu G M, Wang J, et al. Thermal decomposition mechanism of MgCl2·6H2O[J]. Journal of Inorganic Materials, 2010, 125(3): 306-310. | |
34 | 李永亮, 金翼, 黄云, 等. 储热技术基础(Ⅰ)-储热的基本原理及研究新动向[J]. 储能科学与技术, 2013, 2(1): 69-72. |
Li Y L, Jin Y, Huang Y. et al. Principles and new development of thermal storage technology(I)[J]. Energy Storage Science and Technology, 2013, 2(1): 69-72. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[7] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1522
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2226
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||