化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4134-4145.DOI: 10.11949/0438-1157.20201651
马玖辰1,2,3(),易飞羽1,3,张秋丽1,3,王宇1,2,3
收稿日期:
2020-11-16
修回日期:
2021-02-12
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
马玖辰
作者简介:
马玖辰(1980—),男,博士,副教授,基金资助:
Jiuchen MA1,2,3(),Feiyu YI1,3,Qiuli ZHANG1,3,Yu WANG1,2,3
Received:
2020-11-16
Revised:
2021-02-12
Online:
2021-08-05
Published:
2021-08-05
Contact:
Jiuchen MA
摘要:
基于所建立的深井套管式换热器井孔内、外非稳态传热模型,推导得到富水型热储层地下水渗流作用下深井换热器进(出)水管、固井水泥温度以及热储层过余温度的瞬态解析解。以示范工程现场监测数据与有限体积法数值计算结果为验证依据,探究热储层中渗流过程对于深井换热器传热特性的影响。计算得到,当深井换热器循环水量稳定在30 m3/h时,热储层中达西流速由0提高到5×10-6 m/s时,平均换热量增大55 kW。然而在忽略热储层中渗流过程时,循环水量由30 m3/h提高到60 m3/h,平均换热量增大34 kW,循环水泵耗功提高20.6 kW。研究表明:随着渗流速度的增大,热储层中的传热机制发生改变,从而强化深井换热器的传热过程;同时降低了循环水流量对于深井换热器换热性能的影响程度。
中图分类号:
马玖辰, 易飞羽, 张秋丽, 王宇. 富水型热储层深井套管式换热器传热特性研究[J]. 化工学报, 2021, 72(8): 4134-4145.
Jiuchen MA, Feiyu YI, Qiuli ZHANG, Yu WANG. Heat transfer characteristics of coaxial tubes type deep borehole heat exchanger in water-rich geothermal reservoir[J]. CIESC Journal, 2021, 72(8): 4134-4145.
典型参数 | 数值 |
---|---|
地埋管长度 H | 2000 m |
井孔直径D | 350 mm |
出液管外径 do | 140 mm |
出液管壁厚 bo | 14 mm |
进液管外径 di | 245 mm |
进液管壁厚 bi | 18 mm |
进液管壁热导率 λpi | 41 W/(m·K) |
出液管壁热导率 λpo | 0.42 W/(m·K) |
固井水泥热导率 λg | 2.8 W/(m·K) |
固井水泥体积比热容 ρgcg | 2.19×106 J/(m3·K) |
循环液热导率 λr | 0.65 W/(m·K) |
循环液体积比热容 cr ρr | 4.2×106 J/(m3·K) |
表1 深井套管式换热器设计参数
Table 1 Design parameters of the CXA-type DBHE
典型参数 | 数值 |
---|---|
地埋管长度 H | 2000 m |
井孔直径D | 350 mm |
出液管外径 do | 140 mm |
出液管壁厚 bo | 14 mm |
进液管外径 di | 245 mm |
进液管壁厚 bi | 18 mm |
进液管壁热导率 λpi | 41 W/(m·K) |
出液管壁热导率 λpo | 0.42 W/(m·K) |
固井水泥热导率 λg | 2.8 W/(m·K) |
固井水泥体积比热容 ρgcg | 2.19×106 J/(m3·K) |
循环液热导率 λr | 0.65 W/(m·K) |
循环液体积比热容 cr ρr | 4.2×106 J/(m3·K) |
地层 类型 | 岩性 构成 | 埋深 H/m | 水平渗透系数 KXY/(m/s) | 孔隙率 εs | 体积比热容 csρs/(J/(m3·K)) | 热导率λs/ (W/(m·K)) | 纵向热弥散度 αL/m | 横向热弥散度αT/m |
---|---|---|---|---|---|---|---|---|
第四系 | 黏土层 | 0~40 | 5.0×10-9 | 0.41 | 3.2×106 | 1.4 | 0.3 | 0.03 |
粉砂 | 40~200 | 4.2×10-9 | 0.38 | 2.4×106 | 1.9 | 1.0 | 0.1 | |
新近系 | 泥岩 | 200~660 | 4.2×10-8 | 0.31 | 2.0×106 | 2. 7 | 2.0 | 0.2 |
泥岩/砂岩互层 | 660~1060 | 3.0×10-6 | 0.29 | 3.1×106 | 2.9 | 2.0 | 0.2 | |
奥陶系 | 石灰岩 | 1060~1780 | 2.0×10-5 | 0.28 | 3.0×106 | 2.8 | 5.0 | 0.5 |
寒武系 | 泥岩 | 1780~2000 | 4.2×10-8 | 0.31 | 2.0×106 | 2. 7 | 2.0 | 0.2 |
表2 地层类型与典型岩石(土)物性参数
Table 2 The stratigraphic type and the physical parameters of the underground rock-soil layers
地层 类型 | 岩性 构成 | 埋深 H/m | 水平渗透系数 KXY/(m/s) | 孔隙率 εs | 体积比热容 csρs/(J/(m3·K)) | 热导率λs/ (W/(m·K)) | 纵向热弥散度 αL/m | 横向热弥散度αT/m |
---|---|---|---|---|---|---|---|---|
第四系 | 黏土层 | 0~40 | 5.0×10-9 | 0.41 | 3.2×106 | 1.4 | 0.3 | 0.03 |
粉砂 | 40~200 | 4.2×10-9 | 0.38 | 2.4×106 | 1.9 | 1.0 | 0.1 | |
新近系 | 泥岩 | 200~660 | 4.2×10-8 | 0.31 | 2.0×106 | 2. 7 | 2.0 | 0.2 |
泥岩/砂岩互层 | 660~1060 | 3.0×10-6 | 0.29 | 3.1×106 | 2.9 | 2.0 | 0.2 | |
奥陶系 | 石灰岩 | 1060~1780 | 2.0×10-5 | 0.28 | 3.0×106 | 2.8 | 5.0 | 0.5 |
寒武系 | 泥岩 | 1780~2000 | 4.2×10-8 | 0.31 | 2.0×106 | 2. 7 | 2.0 | 0.2 |
图6 不同热储层地下水的达西流速下深井换热器垂向温度分布
Fig.6 Fluid vertical temperature profiles in the DBHE under the different Darcy velocity of underground water in water-rich hot reservoirs
达西流速uf/ (m/s) | 进水管垂向温升/ (℃/100 m) | 出水管垂向温降/ (℃/100 m) | ||
---|---|---|---|---|
10 d | 120 d | 10 d | 120 d | |
0 | 0.73 | 0.61 | 0.41 | 0.37 |
1×10-6 | 0.84 | 0.73 | 0.43 | 0.38 |
5×10-6 | 0.92 | 0.82 | 0.44 | 0.40 |
表3 深井换热器进(出)水管温度变化率
Table 3 The temperature changing rate in the inlet (outlet) pipe of the DBHE
达西流速uf/ (m/s) | 进水管垂向温升/ (℃/100 m) | 出水管垂向温降/ (℃/100 m) | ||
---|---|---|---|---|
10 d | 120 d | 10 d | 120 d | |
0 | 0.73 | 0.61 | 0.41 | 0.37 |
1×10-6 | 0.84 | 0.73 | 0.43 | 0.38 |
5×10-6 | 0.92 | 0.82 | 0.44 | 0.40 |
1 | 自然资源部中国地质调查局, 等. 中国地热能发展报告(2018)[M]. 北京: 中国石化出版社, 2018. |
China Geological Survey of Natural Resources Ministry, et a1. China Geological Energy Development Report(2018) [M]. Beijing: China Petrochemical Press, 2018. | |
2 | 水电水利规划设计总院. 中国可再生能源发展报告2019[M]. 北京: 中国水利水电出版社, 2020. |
China Renewable Energy Engineering Institute. China Renewable Energy Development [M]. Beijing: China Water Power Press, 2020. | |
3 | 国家发展与改革委员会能源研究所, 等. 中国可再生能源展望2019 [M]. 北京: 科学出版社, 2020. |
National Development and Reform Commission Energy Reform Institute, et al. China Renewable Energy Outlook 2019 [M]. Beijing: Science Press, 2020. | |
4 | Zhao Y Z, Ma Z B, Pang Z H. A fast simulation approach to the thermal recovery characteristics of deep borehole heat exchanger after heat extraction[J]. Sustainability, 2020, 12(5): 2021. |
5 | Luo Y Q, Yu J H, Yan T, et al. Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method[J]. Energy and Buildings, 2020, 212: 109829. |
6 | 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60(12): 4741-4752. |
Kong Y L, Chen C F, Shao H B, et al. Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese Journal of Geophysics, 2017, 60(12): 4741-4752. | |
7 | 孔彦龙, 黄永辉, 郑天元, 等. 地热能可持续开发利用的数值模拟软件OpenGeoSys: 原理与应用[J]. 地学前缘, 2020, 27(1): 170-177. |
Kong Y L, Huang Y H, Zheng T Y, et al. Principle and application of OpenGeoSys for geothermal energy sustainable utilization[J]. Earth Science Frontiers, 2020, 27(1): 170-177. | |
8 | Chen C F, Shao H B, Naumov D, et al. Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating[J]. Geothermal Energy, 2019, 7(1): 1-26. |
9 | Beier R A. Thermal response tests on deep borehole heat exchangers with geothermal gradient[J]. Applied Thermal Engineering, 2020, 178: 115447. |
10 | 卜宪标, 冉运敏, 王令宝, 等. 单井地热供暖关键因素分析[J]. 浙江大学学报(工学版), 2019, 53(5): 957-964. |
Bu X B, Ran Y M, Wang L B, et al. Analysis of key factors affecting single well geothermal heating[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(5): 957-964. | |
11 | 卜宪标, 蒋坤卿. 地热单井连续和间歇供暖性能[J]. 中国科学: 技术科学, 2019, 49(12): 1514-1522. |
Bu X B, Jiang K Q. Performance of a geothermal single well for continuous and intermittent heating[J]. Scientia Sinica (Technologica), 2019, 49(12): 1514-1522. | |
12 | 冉运敏, 卜宪标. 保温对地热单井换热性能的影响分析[J]. 化工学报, 2019, 70(11): 4191-4198. |
Ran Y M, Bu X B. Influence analysis of insulation on performance of single well geothermal heating system[J]. CIESC Journal, 2019, 70(11): 4191-4198. | |
13 | Bu X B, Ran Y M, Zhang D D. Experimental and simulation studies of geothermal single well for building heating[J]. Renewable Energy, 2019, 143: 1902-1909. |
14 | Wang Z H, Wang F H, Liu J, et al. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system[J]. Energy Conversion and Management, 2017, 153: 603-615. |
15 | Liu J, Wang F H, Cai W L, et al. Numerical study on the effects of design parameters on the heat transfer performance of coaxial deep borehole heat exchanger[J]. International Journal of Energy Research, 2019, 43(12): 6337-6352. |
16 | Cai W L, Wang F H, Liu J, et al. Experimental and numerical investigation of heat transfer performance and sustainability of deep borehole heat exchangers coupled with ground source heat pump systems[J]. Applied Thermal Engineering, 2019, 149: 975-986. |
17 | Fang L, Diao N R, Shao Z K, et al. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings, 2018, 167: 79-88. |
18 | 方亮. 地源热泵系统中深层地埋管换热器的传热分析及其应用[D]. 济南: 山东建筑大学, 2018. |
Fang L. Heat transfer analysis and application of deep borehole heat exchanger in ground source heat pump systems[D]. Jinan: Shandong Jianzhu University, 2018. | |
19 | Fang L, Diao N R, Shao Z K, et al. Study on thermal resistance of coaxial tube boreholes in ground-coupled heat pump systems[J]. Procedia Engineering, 2017, 205: 3735-3742. |
20 | Śliwa T, Kruszewski M, Zare A, et al. Potential application of vacuum insulated tubing for deep borehole heat exchangers[J]. Geothermics, 2018, 75: 58-67. |
21 | 庞忠和, 罗霁, 程远志, 等. 中国深层地热能开采的地质条件评价[J]. 地学前缘, 2020, 27(1): 134-151. |
Pang Z H, Luo J, Cheng Y Z, et al. Evaluation of geological conditions for the development of deep geothermal energy in China[J]. Earth Science Frontiers, 2020, 27(1): 134-151. | |
22 | 关锌. 地热资源经济评价方法与应用研究[D]. 武汉: 中国地质大学, 2014. |
Guan X. Study on method and application of economic evaluation of geothermal resources[D]. Wuhan: ChinaUniversity of Geosciences, 2014. | |
23 | Cui Y L, Zhu J, Twaha S, et al. A comprehensive review on 2D and 3D models of vertical ground heat exchangers[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 84-114. |
24 | Pan A Q, Lu L, Cui P, et al. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1056-1065. |
25 | Casasso A, Sethi R. Efficiency of closed loop geothermal heat pumps: a sensitivity analysis[J]. Renewable Energy, 2014, 62: 737-746. |
26 | 马玖辰, 邵刚, 王宇, 等. 抽-灌井分布模式对地埋管换热器井群传热特性的影响[J]. 应用基础与工程科学学报, 2019, 27(5): 1158-1171. |
Ma J C, Shao G, Wang Y, et al. Influence of the distribution of pumping and injection wells on heat transfer characteristic of borehole heat exchangers[J]. Journal of Basic Science and Engineering, 2019, 27(5): 1158-1171. | |
27 | Casasso A, Sethi R. Efficiency of closed loop geothermal heat pumps: a sensitivity analysis[J]. Renewable Energy, 2014, 62: 737-746. |
28 | Molina-Giraldo N, Blum P, Zhu K, et al. A moving finite line source model to simulate borehole heat exchangers with groundwater advection[J]. International Journal of Thermal Sciences, 2011, 50(12): 2506-2513. |
29 | Zhang W K, Yang H X, Diao N R, et al. Exploration on the reverse calculation method of groundwater velocity by means of the moving line heat source[J]. International Journal of Thermal Sciences, 2016, 99: 52-63. |
30 | Holmberg H, Acuña J, Næss E, et al. Thermal evaluation of coaxial deep borehole heat exchangers[J]. Renewable Energy, 2016, 97: 65-76. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||