化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4649-4657.DOI: 10.11949/0438-1157.20210156
收稿日期:
2021-01-25
修回日期:
2021-07-08
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
郭鹏程
作者简介:
颜建国(1987—),男,博士,副教授,基金资助:
Jianguo YAN1(),Shumin ZHENG1,Pengcheng GUO1(),Bo ZHANG2,Zhenkai MAO2
Received:
2021-01-25
Revised:
2021-07-08
Online:
2021-09-05
Published:
2021-09-05
Contact:
Pengcheng GUO
摘要:
超临界二氧化碳(S-CO2)动力循环在能源利用领域中拥有广阔的应用前景,其中超临界CO2的传热特性对其能量转换效率至关重要。开展了超临界CO2在水平小圆管内对流传热实验研究,并通过建立遗传算法优化的BP神经网络模型(GA-BP),对其在不同工况下的传热特性进行预测分析。实验参数范围:系统压力7.5~9.5 MPa,质量流速1100~2100 kg/(m2?s),热通量120~560 kW/m2。实验结果表明,超临界CO2传热系数随流体温度的升高先增大后减小,在拟临界温度附近达到最大值。GA-BP神经网络模型能有效地预测超临界CO2的传热系数,预测数据的决定系数R2为0.99662,超过95%的数据误差位于±10%范围内,平均误差为3.55%,为超临界流体传热预测提供新的思路。
中图分类号:
颜建国, 郑书闽, 郭鹏程, 张博, 毛振凯. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657.
Jianguo YAN, Shumin ZHENG, Pengcheng GUO, Bo ZHANG, Zhenkai MAO. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network[J]. CIESC Journal, 2021, 72(9): 4649-4657.
实验参数 | 数值 |
---|---|
系统压力p/ MPa | 7.5,8.5,9.5 |
质量流速G/( kg/(m2?s)) | 1100,1600,2100 |
实验段热通量q/( kW/m2) | 120,340,560 |
进口温度Tin/℃ | 20~60 |
表1 实验工况
Table 1 Test conditions
实验参数 | 数值 |
---|---|
系统压力p/ MPa | 7.5,8.5,9.5 |
质量流速G/( kg/(m2?s)) | 1100,1600,2100 |
实验段热通量q/( kW/m2) | 120,340,560 |
进口温度Tin/℃ | 20~60 |
实验参数 | 不确定度/% |
---|---|
压力/ MPa | 0.14 |
流体温度/℃ | 0.5 |
壁面温度/℃ | 0.4 |
质量流速/(kg/(m2?s)) | 0.75 |
热通量/(kW/m2) | 4.63 |
传热系数/(W/(m2·K)) | 5.20 |
表2 参数不确定度
Table 2 Parameter uncertainties
实验参数 | 不确定度/% |
---|---|
压力/ MPa | 0.14 |
流体温度/℃ | 0.5 |
壁面温度/℃ | 0.4 |
质量流速/(kg/(m2?s)) | 0.75 |
热通量/(kW/m2) | 4.63 |
传热系数/(W/(m2·K)) | 5.20 |
1 | Liang Y C, Bian X Y, Qian W W, et al. Theoretical analysis of a regenerative supercritical carbon dioxide Brayton cycle/organic Rankine cycle dual loop for waste heat recovery of a diesel/natural gas dual-fuel engine[J]. Energy Conversion and Management, 2019, 197: 111845. |
2 | Wu P, Ma Y D, Gao C T, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767. |
3 | 徐进良, 刘超, 孙恩慧, 等. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1-10. |
Xu J L, Liu C, Sun E H, et al. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1-10. | |
4 | Novales D, Erkoreka A, de la Peña V, et al. Sensitivity analysis of supercritical CO2 power cycle energy and exergy efficiencies regarding cycle component efficiencies for concentrating solar power[J]. Energy Conversion and Management, 2019, 182: 430-450. |
5 | Teng L, Xuan Y M. A novel solar receiver for supercritical CO2 Brayton cycle[J]. Energy Procedia, 2019, 158: 339-344. |
6 | Kim S G, Yu H, Moon J, et al. A concept design of supercritical CO2 cooled SMR operating at isolated microgrid region[J]. International Journal of Energy Research, 2017, 41(4): 512-525. |
7 | Oh B S, Ahn Y H, Yu H, et al. Safety evaluation of supercritical CO2 cooled micro modular reactor[J]. Annals of Nuclear Energy, 2017, 110: 1202-1216. |
8 | Chen Y, Ma G W, Wang H D, et al. Application of carbon dioxide as working fluid in geothermal development considering a complex fractured system[J]. Energy Conversion and Management, 2019, 180: 1055-1067. |
9 | Ruiz-Casanova E, Rubio-Maya C, Pacheco-Ibarra J J, et al. Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources[J]. Energy Conversion and Management, 2020, 216: 112978. |
10 | Chu W X, Bennett K, Cheng J, et al. A review of supercritical CO2 Brayton cycle using in renewable energy applications[J]. Renewable Energy and Sustainable Development, 2018, 4(1): 14. |
11 | Cabeza L F, de Gracia A, Fernández A I, et al. Supercritical CO2 as heat transfer fluid: a review[J]. Applied Thermal Engineering, 2017, 125: 799-810. |
12 | Ehsan M M, Guan Z Q, Klimenko A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675. |
13 | 吴新明, 朱兵国, 张良, 等. 圆管内超临界CO2的阻力特性[J]. 化工学报, 2018, 69(12): 5024-5033. |
Wu X M, Zhu B G, Zhang L, et al. Resistance characteristics of supercritical CO2 in circular tube[J]. CIESC Journal, 2018, 69(12): 5024-5033. | |
14 | 王乃心, 杨大章, 谢晶, 等. 超临界CO2对流换热特性试验研究进展[J]. 流体机械, 2020, 48(11): 73-79. |
Wang N X, Yang D Z, Xie J, et al. A review on experimental studies of convection heat transfer characteristic of supercritical CO2[J]. Fluid Machinery, 2020, 48(11): 73-79. | |
15 | Rao N T, Oumer A N, Jamaludin U K. State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels[J]. The Journal of Supercritical Fluids, 2016, 116: 132-147. |
16 | 颜建国, 朱凤岭, 郭鹏程, 等. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787. |
Yan J G, Zhu F L, Guo P C, et al. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions[J]. CIESC Journal, 2019, 70(5): 1779-1787. | |
17 | Zhang S J, Xu X X, Liu C, et al. Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119074. |
18 | 朱兵国, 吴新明, 张良, 等. 垂直上升管内超临界CO2流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290, 1661. |
Zhu B G, Wu X M, Zhang L, et al. Flow and heat transfer characteristics of supercritical CO2 in vertical tube[J]. CIESC Journal, 2019, 70(4): 1282-1290, 1661. | |
19 | Guo P C, Liu S C, Yan J G, et al. Experimental study on heat transfer of supercritical CO2 flowing in a mini tube under heating conditions[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119623. |
20 | Wang J Y, Guan Z Q, Gurgenci H, et al. A computationally derived heat transfer correlation for in-tube cooling turbulent supercritical CO2[J]. International Journal of Thermal Sciences, 2019, 138: 190-205. |
21 | Ma T, Chu W X, Xu X Y, et al. An experimental study on heat transfer between supercritical carbon dioxide and water near the pseudo-critical temperature in a double pipe heat exchanger[J]. International Journal of Heat and Mass Transfer, 2016, 93: 379-387. |
22 | Wang L, Pan Y C, Lee J D, et al. Convective heat transfer characteristics of supercritical carbon dioxide in vertical miniature tubes of a uniform heating experimental system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120833. |
23 | Dhanuskodi R, Kaliappan R, Suresh S, et al. Artificial neural networks model for predicting wall temperature of supercritical boilers[J]. Applied Thermal Engineering, 2015, 90: 749-753. |
24 | Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for thermal analysis of heat exchangers - a review[J]. International Journal of Thermal Sciences, 2015, 90: 150-172. |
25 | Yang F B, Cho H, Zhang H G, et al. Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery[J]. Energy Conversion and Management, 2018, 164: 15-26. |
26 | Ma D L, Zhou T, Chen J, et al. Supercritical water heat transfer coefficient prediction analysis based on BP neural network[J]. Nuclear Engineering and Design, 2017, 320: 400-408. |
27 | Azizi S, Ahmadloo E. Prediction of heat transfer coefficient during condensation of R134a in inclined tubes using artificial neural network[J]. Applied Thermal Engineering, 2016, 106: 203-210. |
28 | Pesteei S M, Mehrabi M. Modeling of convection heat transfer of supercritical carbon dioxide in a vertical tube at low Reynolds numbers using artificial neural network[J]. International Communications in Heat and Mass Transfer, 2010, 37(7): 901-906. |
29 | Lei X L, Zhang J, Gou L T, et al. Experimental study on convection heat transfer of supercritical CO2 in small upward channels[J]. Energy, 2019, 176: 119-130. |
30 | 章聪, 江锦波, 彭旭东, 等. 近临界区CO2物性预测模型对比与修正[J]. 化工学报, 2019, 70(8): 3058-3070. |
Zhang C, Jiang J B, Peng X D, et al. Comparison and correction of CO2 properties model in critical region[J]. CIESC Journal, 2019, 70(8): 3058-3070. | |
31 | Coleman H W, Steele W G. Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 1995, 33(10): 1888-1896. |
32 | Zahlan H, Groeneveld D, Tavoularis S. Measurements of convective heat transfer to vertical upward flows of CO2 in circular tubes at near-critical and supercritical pressures[J]. Nuclear Engineering and Design, 2015, 289: 92-107. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||