1 |
Dhir V K, Duffey R B, Catton I. Quenching studies on a zircaloy rod bundle[J]. Journal of Heat Transfer, 1981, 103(2): 293-299.
|
2 |
Jena A. Wettability of candidate accident tolerant fuel (ATF) cladding materials in LWR conditions[D]. Massachusetts: Massachusetts Institute of Technology, 2020.
|
3 |
Long S, Liang Y, Jiang Y, et al. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel[J]. Materials Science and Engineering: A, 2016, 676: 38-47.
|
4 |
Ma J, He W, Liu Q. Strengthening a multilayered Zr/Ti composite by quenching at higher temperature[J]. Materials Science and Engineering: A, 2018, 737: 1-8.
|
5 |
Jahedi M, Moshfegh B. Experimental study of quenching process on a rotating hollow cylinder by one row of impinging jets[C]//9th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics. Iguazu Falls, Brazil, 2017.
|
6 |
Woodfield P L, Mozumder A K, Monde M. On the size of the boiling region in jet impingement quenching[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 460-465.
|
7 |
Mozumder A K, Monde M, Woodfield P L, et al. Maximum heat flux in relation to quenching of a high temperature surface with liquid jet impingement[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 2877-2888.
|
8 |
Hwang G S, In W K, Lee C Y. Quenching experiments of vertical Inconel and zircaloy tubes in internal water flow[J]. Annals of Nuclear Energy, 2022, 167: 108798.
|
9 |
Lee Y P, Chen W J, Groeneveld D C. Rewetting of very hot vertical and horizontal channels by flooding[C]//International Heat Transfer Conference Digital Library. Begel House Inc., 1978, 5: 95-100.
|
10 |
Chung M K, Lee Y W, Cha J H. Experimental study of rewetting phenomena[J]. Nuclear Engineering and Technology, 1980, 12(1): 9-18.
|
11 |
Li C, Wang Z, Wang P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8): 1084-1088.
|
12 |
Chu K H, Enright R, Wang E N. Structured surfaces for enhanced pool boiling heat transfer[J]. Applied Physics Letters, 2012, 100(24): 241603.
|
13 |
Ahn H S, Kim J M, Kim M H. Experimental study of the effect of a reduced graphene oxide coating on critical heat flux enhancement[J]. International Journal of Heat and Mass Transfer, 2013, 60: 763-771.
|
14 |
肖平, 侯峰, 刘京雷. 火焰喷涂型多孔表面制备及其池沸腾实验研究[J]. 化学工程, 2018, 46( 8): 28-32, 37.
|
|
Xiao P, Hou F, Liu J L. Preparation and experimental study on pool boiling of flame-sprayed porous surface[J]. Chemical Engineering(China), 2018, 46( 8): 28-32, 37.
|
15 |
Kim H, DeWitt G, McKrell T, et al. On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles[J]. International Journal of Multiphase Flow, 2009, 35(5): 427-438.
|
16 |
Kim H, Ahn H S, Kim M H. On the mechanism of pool boiling critical heat flux enhancement in nanofluids[J]. Journal of Heat Transfer, 2010, 132: 061501.
|
17 |
Zhang L, Yu Z, Li D, et al. Enhanced critical heat flux during quenching of extremely dilute aqueous colloidal suspensions with graphene oxide nanosheets[J]. Journal of Heat Transfer, 2013, 135: 054502.
|
18 |
王洪亮, 夏虹, 张会勇, 等. 纳米流体对临界热通量强化影响池沸腾实验研究[J]. 应用科技, 2017(1): 82-86.
|
|
Wang H L, Xia H, Zhang H Y, et al. Investigation of critical heat flux emhancement pool boiling experiment by using nanofluids [J]. Applied Science and Technology, 2017(1): 82-86.
|
19 |
Taylor R A, Phelan P E. Pool boiling of nanofluids: comprehensive review of existing data and limited new data[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5339-5347.
|
20 |
Barber J, Brutin D, Tadrist L. A review on boiling heat transfer enhancement with nanofluids[J]. Nanoscale Research Letters, 2011, 6(1): 1-16.
|
21 |
Kim H. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review[J]. Nanoscale Research Letters, 2011, 6(1): 1-18.
|
22 |
Seon Ahn H, Hwan Kim M. A review on critical heat flux enhancement with nanofluids and surface modification[J]. Journal of Heat Transfer, 2012, 134:024001.
|
23 |
Kim H, Truong B, Buongiorno J, et al. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena[J]. Applied Physics Letters, 2011, 98(8): 083121.
|
24 |
O'Hanley H, Coyle C, Buongiorno J, et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux[J]. Applied Physics Letters, 2013, 103(2): 024102.
|
25 |
Zhang C, Zhou W, Wang Q, et al. Comparison of static contact angle of various metal foams and porous copper fiber sintered sheet[J]. Applied Surface Science, 2013, 276: 377-382.
|
26 |
赵鹏飞, 冀文涛, 赵二涛, 等. 不同润湿性表面池沸腾换热特性研究[J]. 中国科技论文, 2018, 13(11): 1211-1216.
|
|
Zhao P F, Ji W T, Zhao E T, et al. Study on the pool boiling heat transfer of surfaces with different wettability[J]. China Sciencepaper, 2018, 13(11): 1211-1216.
|
27 |
Li J Q, Mou L W, Zhang Y H, et al. An experimental study of the accelerated quenching rate and enhanced pool boiling heat transfer on rodlets with a superhydrophilic surface in subcooled water[J]. Experimental Thermal and Fluid Science, 2018, 92: 103-112.
|
28 |
Hendricks T J, Krishnan S, Choi C, et al. Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3357-3365.
|
29 |
Bourdon B, Bertrand E, Di Marco P, et al. Wettability influence on the onset temperature of pool boiling: Experimental evidence onto ultra-smooth surfaces[J]. Advances in Colloid and Interface Science, 2015, 221: 34-40.
|
30 |
Fan L W, Li J Q, Li D Y, et al. Regulated transient pool boiling of water during quenching on nanostructured surfaces with modified wettability from superhydrophilic to superhydrophobic[J]. International Journal of Heat and Mass Transfer, 2014, 76: 81-89.
|
31 |
Betz A R, Xu J, Qiu H, et al. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?[J]. Applied Physics Letters, 2010, 97(14): 141909.
|
32 |
Može M, Zupančič M, Golobič I. Investigation of the scatter in reported pool boiling CHF measurements including analysis of heat flux and measurement uncertainty evaluation methodology[J]. Applied Thermal Engineering, 2020, 169: 114938.
|
33 |
Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
|
34 |
Carey V P. Liquid Vapor Phase Change Phenomena[M]. 2nd ed. New York: Taylor-Francis, 2008: 353-371.
|
35 |
Witte L C, Lienhard J H. On the existence of two‘transition' boiling curves[J]. International Journal of Heat and Mass Transfer, 1982, 25(6): 771-779.
|
36 |
Hu H, Xu C, Zhao Y, et al. Modification and enhancement of cryogenic quenching heat transfer by a nanoporous surface[J]. International Journal of Heat and Mass Transfer, 2015, 80: 636-643.
|