化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1332-1342.DOI: 10.11949/0438-1157.20221375
祖凌鑫1(), 胡荣庭1(), 李鑫1, 陈余道1,2, 陈广林3
收稿日期:
2022-10-18
修回日期:
2022-12-23
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
胡荣庭
作者简介:
祖凌鑫(1998—),男,硕士研究生,864868379@qq.com
基金资助:
Lingxin ZU1(), Rongting HU1(), Xin LI1, Yudao CHEN1,2, Guanglin CHEN3
Received:
2022-10-18
Revised:
2022-12-23
Online:
2023-03-05
Published:
2023-04-19
Contact:
Rongting HU
摘要:
木质生物质具有复杂的化学组分和结构,用作硝酸盐污染治理的碳源时,常出现反硝化速率缓慢和有机物残留。选择碎木作为原料,采用化学法逐级去除主要组分木质素(RL)和半纤维素(AF),获取的组分进行碳释放,释放溶液用于反硝化,拟合了碳释放动力学特征,测定了碳释放和反硝化产物的碳、氮类指标和光谱特征值。结果表明,碎木去除木质素后在1732和1251 cm-1处的红外吸收峰消失。RL和AF的释碳速率分别为天然碎木(NW)的1.8倍和1.2倍,NW的速率为0.11 mg·g-1·d-1。碳释放过程符合二级反应动力学(相关系数R2>0.90)和Ritger-Peppas动力学(R2>0.98)特征。碳释放产物可被反硝化利用的效率为26.5%~49.7%,其中NW组最低,去除硝酸盐的碳氮比为1.0~1.5,残留有机物的腐殖化程度较低,主要为类酪氨酸。
中图分类号:
祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342.
Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass[J]. CIESC Journal, 2023, 74(3): 1332-1342.
图1 碎木组分条件下碳释放和反硝化试验设计的流程图
Fig.1 Flow chart of experimental design for carbon release and denitrification under the conditions of woodchip compositions
序号 | 指标 | 方法 | 仪器(厂家和型号) |
---|---|---|---|
1 | 碎木组分 | 范氏洗涤法 | 分析天平(美国,HZK-FA110S) |
2 | 红外光谱特征 | 漫反射法 | 原位红外分析仪(美国,Frontier GMT500A) |
3 | 三维荧光光谱 | 三维荧光光谱分析法 | 三维荧光扫描光谱仪(日本,Aqualog~UV~800) |
4 | DOC | 燃烧氧化法 | 总有机碳分析仪(德国,multi N/C 3100) |
5 | NO | 紫外分光光度法 | 紫外-可见光谱分光光度计(中国,UV-2355) |
6 | NO | N-(1-萘基)-乙二胺光度法 | 紫外-可见光谱分光光度计(中国,UV-2355) |
7 | NH | 纳氏试剂光度法 | 紫外-可见光谱分光光度计(中国,UV-2355) |
表1 试验指标的测定方法和仪器
Table 1 Determination methods of indexes and instruments during experiments
序号 | 指标 | 方法 | 仪器(厂家和型号) |
---|---|---|---|
1 | 碎木组分 | 范氏洗涤法 | 分析天平(美国,HZK-FA110S) |
2 | 红外光谱特征 | 漫反射法 | 原位红外分析仪(美国,Frontier GMT500A) |
3 | 三维荧光光谱 | 三维荧光光谱分析法 | 三维荧光扫描光谱仪(日本,Aqualog~UV~800) |
4 | DOC | 燃烧氧化法 | 总有机碳分析仪(德国,multi N/C 3100) |
5 | NO | 紫外分光光度法 | 紫外-可见光谱分光光度计(中国,UV-2355) |
6 | NO | N-(1-萘基)-乙二胺光度法 | 紫外-可见光谱分光光度计(中国,UV-2355) |
7 | NH | 纳氏试剂光度法 | 紫外-可见光谱分光光度计(中国,UV-2355) |
碎木,碳释放时间 | 组分/% | ||||
---|---|---|---|---|---|
中性 溶解物 | 半纤维素 | 纤维素 | 木质素 | 灰分 | |
NW,0 d | 11.5 | 11.6 | 45.2 | 31.2 | 0.5 |
RL,0 d | 13.1 | 8.1 | 77.8 | 1.0 | 0.3 |
AF,0 d | 9.2 | 2.3 | 88.2 | 0.1 | 0.1 |
NW,58 d | 11.3 | 8.3 | 49.6 | 30.9 | 0.1 |
RL,58 d | 10.2 | 7.7 | 82.0 | 0.2 | 0.1 |
AF,58 d | 6.6 | 3.0 | 90.3 | 0.1 | 0.1 |
表2 木质生物质分离固体组分和碳释放后的化学组分
Table 2 Separating solid components and chemical components after carbon release for woody biomass
碎木,碳释放时间 | 组分/% | ||||
---|---|---|---|---|---|
中性 溶解物 | 半纤维素 | 纤维素 | 木质素 | 灰分 | |
NW,0 d | 11.5 | 11.6 | 45.2 | 31.2 | 0.5 |
RL,0 d | 13.1 | 8.1 | 77.8 | 1.0 | 0.3 |
AF,0 d | 9.2 | 2.3 | 88.2 | 0.1 | 0.1 |
NW,58 d | 11.3 | 8.3 | 49.6 | 30.9 | 0.1 |
RL,58 d | 10.2 | 7.7 | 82.0 | 0.2 | 0.1 |
AF,58 d | 6.6 | 3.0 | 90.3 | 0.1 | 0.1 |
图2 碎木分离组分及NW、RL、AL在碳释放过程中的红外光谱吸收特征曲线and NW, RL, AL during carbon release process
Fig.2 Infrared absorption characteristic of components separated from woodchips
碎木 分离组分 | 二级反应动力学方程 | Ritger-Peppas动力学方程 | ||||||
---|---|---|---|---|---|---|---|---|
拟合公式 | R2 | cm | K | t0.5 | 拟合公式 | R2 | n | |
NW | 0.906 | 14.8 | 0.13 | 111.4 | 0.993 | 0.26 | ||
RL | 0.932 | 45.8 | 1.13 | 40.5 | 0.984 | 0.16 | ||
AF | 0.930 | 24.9 | 0.45 | 55.6 | 0.990 | 0.20 |
表3 碎木分离组分碳释放过程的动力学方程拟合结果
Table 3 Fitting results of kinetic equation for the carbon release process of chemical compositions in woodchip
碎木 分离组分 | 二级反应动力学方程 | Ritger-Peppas动力学方程 | ||||||
---|---|---|---|---|---|---|---|---|
拟合公式 | R2 | cm | K | t0.5 | 拟合公式 | R2 | n | |
NW | 0.906 | 14.8 | 0.13 | 111.4 | 0.993 | 0.26 | ||
RL | 0.932 | 45.8 | 1.13 | 40.5 | 0.984 | 0.16 | ||
AF | 0.930 | 24.9 | 0.45 | 55.6 | 0.990 | 0.20 |
图4 碎木不同释碳期的浸出液在反硝化过程中DOC含量[(a)、(b)]和碳氮比[(c)、(d)]的变化various carbon release periods
Fig.4 The DOC contents [(a), (b)] and carbon to nitrogen ratios [(c), (d)] in denitrification for woodchip leachates during
图5 第0~2 d [(a)~(c)]和第52~58 d [(d)~(f)]浸出液在反硝化过程中的紫外-可见光谱特征值
Fig.5 Ultraviolet-visible spectral characteristics for leachates of 0—2 d [(a)—(c)] and 52—58 d [(d)—(f)] during denitrification process
图6 碳释放第0~2 d [(a)~(c)]和第52~58 d [(d)~(f)]浸出液及后者反硝化后[(g)~(i)]的三维荧光光谱图
Fig.6 Three-dimensional fluorescence characteristics for leachates of 0—2 d [(a)—(c)] and 52—58 d [(d)—(f)] carbon release, and after denitrification [(g)—(i)] for the latter leachate
1 | 张妍, 张秋英, 李发东, 等. 基于稳定同位素和贝叶斯模型的引黄灌区地下水硝酸盐污染源解析[J]. 中国生态农业学报, 2019, 27(3): 484-493. |
Zhang Y, Zhang Q Y, Li F D, et al. Source identification of nitrate contamination of groundwater in Yellow River Irrigation Districts using stable isotopes and Bayesian model[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 484-493. | |
2 | Wang S Q, Zheng W B, Currell M, et al. Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain[J]. Science of the Total Environment, 2017, 609: 607-620. |
3 | 李晓欣, 王仕琴, 陈肖如, 等. 北方区域尺度地下水-包气带硝酸盐分布与变化特征[J]. 中国生态农业学报, 2021, 29(1): 208-216. |
Li X X, Wang S Q, Chen X R, et al. Spatial distribution and changes of nitrate in the vadose zone and underground water in Northern China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 208-216. | |
4 | 李学先, 吴攀, 查学芳, 等. 基于水化学及稳定同位素的岩溶山区城镇水体硝酸盐来源示踪[J]. 环境科学学报, 2021, 41(4): 1428-1439. |
Li X X, Wu P, Zha X F, et al. Tracing nitrate sources in urban waters of Karst mountainous area using hydrochemistry and stable isotope[J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1428-1439. | |
5 | 范天凤, 董伟羊, 赵转军, 等. 改性枸杞枝作为反硝化脱氮碳源的研究[J]. 环境科学学报, 2021, 41(9): 3513-3520. |
Fan T F, Dong W Y, Zhao Z J, et al. Study on the modified Chinese wolfberry branches as carbon source for denitrification[J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3513-3520. | |
6 | Liu L J, Wang F, Xu S H, et al. Woodchips bioretention column for stormwater treatment: nitrogen removal performance, carbon source and microbial community analysis[J]. Chemosphere, 2021, 285: 131519. |
7 | 凌宇, 闫国凯, 王海燕, 等. 6种农业废弃物初期碳源及溶解性有机物释放机制[J]. 环境科学, 2021, 42(5): 2422-2431. |
Ling Y, Yan G K, Wang H Y, et al. Release mechanisms of carbon source and dissolved organic matter of six agricultural wastes in the initial stage[J]. Environmental Science, 2021, 42(5): 2422-2431. | |
8 | 张雯, 张亚平, 尹琳, 等. 以10种农业废弃物为基料的地下水反硝化碳源属性的实验研究[J]. 环境科学学报, 2017, 37(5): 1787-1797. |
Zhang W, Zhang Y P, Yin L, et al. The characteristics of carbon sources for denitrification in groundwater from ten kinds of agricultural wastes[J]. Acta Scientiae Circumstantiae, 2017, 37(5): 1787-1797. | |
9 | 秦梦彤, 胡婧, 李冠华. 生物质生物预处理研究进展与展望[J]. 中国生物工程杂志, 2018, 38(5): 85-91. |
Qin M T, Hu J, Li G H. Recent developments and future prospect of biological pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91. | |
10 | 李登龙, 李明源, 王继莲, 等. 木质纤维素预处理方法研究进展[J]. 食品工业科技, 2019, 40(19): 326-332. |
Li D L, Li M Y, Wang J L, et al. Research progress of lignocellulose pretreatment methods[J]. Science and Technology of Food Industry, 2019, 40(19): 326-332. | |
11 | Zhang Q, Chen X, Wu H, et al. Comparison of clay ceramsite and biodegradable polymers as carriers in pack-bed biofilm reactor for nitrate removal[J]. International Journal of Environmental Research and Public Health, 2019, 16(21): 4184. |
12 | Zhong H, Cheng Y, Ahmad Z, et al. Solid-phase denitrification for water remediation: processes, limitations, and new aspects[J]. Critical Reviews in Biotechnology, 2020, 40(8): 1113-1130. |
13 | Wang H S, Chen N, Feng C P, et al. Insights into heterotrophic denitrification diversity in wastewater treatment systems: progress and future prospects based on different carbon sources[J]. Science of the Total Environment, 2021, 780: 146521. |
14 | 王彤, 汪涵, 周明达, 等. 污水脱氮功能微生物的组学研究进展[J]. 微生物学通报, 2021, 48(12): 4844-4870. |
Wang T, Wang H, Zhou M D, et al. Advances in omics of functional microorganisms for nitrogen removal in wastewater[J]. Microbiology China, 2021, 48(12): 4844-4870. | |
15 | 任俊莉, 刘慧莹, 王孝辉, 等. 木质纤维素资源化主要途径及半纤维素优先资源化利用策略[J]. 生物加工过程, 2020, 18(1): 1-12. |
Ren J L, Liu H Y, Wang X H, et al. Various approaches of lignocellulose utilization and strategies for hemicellulose-preferred lignocellulose biorefinery[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(1): 1-12. | |
16 | 陈广林, 胡荣庭, 祖凌鑫, 等. 木质碳源释碳能力的优化及其对地下水生物反硝化的强化效果[J]. 环境工程学报, 2022, 16(1): 154-163. |
Chen G L, Hu R T, Zu L X, et al. Optimization of carbon release capacity of wood carbon source and its enhancement on biological denitrification efficiency of groundwater[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 154-163. | |
17 | He X S, Xi B D, Wei Z M, et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste[J]. Chemosphere, 2011, 82(4): 541-548. |
18 | Li P H, Hur J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: a review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3): 131-154. |
19 | Kumke M U, Specht C H, Brinkmann T, et al. Alkaline hydrolysis of humic substances—spectroscopic and chromatographic investigations[J]. Chemosphere, 2001, 45(6/7): 1023-1031. |
20 | Hu R T, Zheng X L, Xin J, et al. Selective enhancement and verification of woody biomass digestibility as a denitrification carbon source[J]. Bioresource Technology, 2017, 244: 313-319. |
21 | 邓祥胜, 李明蔓, 何鹏, 等. 桉树伐桩分解过程中木质纤维素成分的变化特征[J]. 中南林业科技大学学报, 2022, 42(5): 160-169. |
Deng X S, Li M M, He P, et al. Characteristics of lignocellulosic components variation during the decomposition of Eucalyptus stumps[J]. Journal of Central South University of Forestry & Technology, 2022, 42(5): 160-169. | |
22 | 孙海燕, 贾茹, 吴艳华, 等. 杉木无性系心材与边材微观结构特征快速检测[J]. 光谱学与光谱分析, 2020, 40(1): 184-188. |
Sun H Y, Jia R, Wu Y H, et al. Rapid detection of microstructural characteristics of heartwood and sapwood of Chinese fir clones[J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 184-188. | |
23 | Kundu C D, Samudrala S P, Kibria M A, et al. One-step peracetic acid pretreatment of hardwood and softwood biomass for platform chemicals production[J]. Scientific Reports, 2021, 11(1): 11183. |
24 | Zhuang J S, Li M, Pu Y Q, et al. Observation of potential contaminants in processed biomass using Fourier transform infrared spectroscopy[J]. Applied Sciences, 2020, 10(12): 4345. |
25 | 余旭芳, 周俊, 任兰天, 等. 小麦秸秆堆肥水溶性有机物的结构和组成演变[J]. 光谱学与光谱分析, 2021, 41(4): 1199-1204. |
Yu X F, Zhou J, Ren L T, et al. Compositional and structural evolutions of dissolved organic compounds during composting of wheat straw[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1199-1204. | |
26 | 邵留, 徐祖信, 王晟, 等. 新型反硝化固体碳源释碳性能研究[J]. 环境科学, 2011, 32(8): 2323-2327. |
Shao L, Xu Z X, Wang S, et al. Performance of new solid carbon source materials for denitrification[J]. Environmental Science, 2011, 32(8): 2323-2327. | |
27 | 李丹, 文飚, 曹春昱. 植物原料中半纤维素预水解反应动力学及其机理研究进展[J]. 中国造纸, 2019, 38(2): 61-66. |
Li D, Wen B, Cao C Y. Research progress on hemicellulose pre-hydrolysis kinetics and mechanism of plant materials[J]. China Pulp & Paper, 2019, 38(2): 61-66. | |
28 | 叶科丽, 唐艳军, 傅丹宁, 等. 纤维素水解制备葡萄糖的研究进展[J]. 中国造纸学报, 2020, 35(2): 81-88. |
Ye K L, Tang Y J, Fu D N, et al. Research progress in preparation of glucose by hydrolysis of cellulose[J]. Transactions of China Pulp and Paper, 2020, 35(2): 81-88. | |
29 | 朱辉翔, 张树楠, 彭英湘, 等. 不同固体碳源释碳特征及其对反硝化脱氮效果研究[J]. 农业现代化研究, 2021, 42(2): 206-214. |
Zhu H X, Zhang S N, Peng Y X, et al. Study on carbon release characteristics and denitrification performance of different solid carbon sources[J]. Research of Agricultural Modernization, 2021, 42(2): 206-214. | |
30 | 孙卓华, 王雪琪, 袁同琦. 基于木质素优先降解策略的木质素高值化利用研究进展[J]. 林业工程学报, 2022, 7(4): 1-12. |
Sun Z H, Wang X Q, Yuan T Q. Recent advances in valorization of lignin based on the lignin-first depolymerization strategy[J]. Journal of Forestry Engineering, 2022, 7(4): 1-12. | |
31 | Hu R T, Zheng X L, Zheng T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management, 2019, 246: 832-839. |
32 | 付昆明, 张晓航, 刘凡奇, 等. 葡萄糖碳源条件下C/N对反硝化和N2O释放性能的影响[J]. 环境工程学报, 2021, 15(4): 1279-1288. |
Fu K M, Zhang X H, Liu F Q, et al. Effect of C/N on denitrification and N2O release with glucose as the carbon source[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1279-1288. | |
33 | 韦宗敏, 黄少斌, 蒋然. 碳源对微生物硝酸盐异化还原成铵过程的影响[J]. 工业安全与环保, 2012, 38(9): 4-7, 14. |
Wei Z M, Huang S B, Jiang R. Effect of carbon on dissimilatory nitrate reduction to ammonium process[J]. Industrial Safety and Environmental Protection, 2012, 38(9): 4-7, 14. | |
34 | 王宇蕴, 赵兵, 马丽婷, 等. 堆肥腐殖化过程及微生物驱动机制[J]. 生物技术通报, 2022, 38(5): 22-28. |
Wang Y Y, Zhao B, Ma L T, et al. Humification process and microbial driving mechanism of composting[J]. Biotechnology Bulletin, 2022, 38(5): 22-28. | |
35 | 李雅妮, 徐华成, 江和龙. 鄱阳湖水体溶解有机质分子量分布、荧光特征及对重金属分布的影响[J]. 湖泊科学, 2020, 32(4): 1029-1040. |
Li Y N, Xu H C, Jiang H L. Molecular weight distribution, fluorescence characteristics of dissolved organic matter and their effect on the distribution of heavy metals of Lake Poyang[J]. Journal of Lake Sciences, 2020, 32(4): 1029-1040. | |
36 | 张强, 席北斗, 杨津津, 等. 不同物料堆肥富里酸的结构特征的研究[J]. 中国环境科学, 2021, 41(2): 763-770. |
Zhang Q, Xi B D, Yang J J, et al. Structural characteristics of fulvic acid composted with different materials[J]. China Environmental Science, 2021, 41(2): 763-770. | |
37 | 闫晓寒, 文威, 解莹, 等. 溶解性有机物特性及在国内的污染研究现状[J]. 环境科学与技术, 2020, 43(6): 169-178. |
Yan X H, Wen W, Xie Y, et al. Study on the properties of dissolved organic matter and its pollution status in China : a review[J]. Environmental Science & Technology, 2020, 43(6): 169-178. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[8] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[9] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[10] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[11] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[12] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[15] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||