化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4343-4351.DOI: 10.11949/0438-1157.20230843
邵翔宇1,2(), 蒋敏2, 杨晓静1, 蒲亮3, 雷刚1, 高建良2
收稿日期:
2023-08-16
修回日期:
2023-09-23
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
邵翔宇
作者简介:
邵翔宇(1983—),男,博士,讲师,shaoxy@hpu.edu.cn
基金资助:
Xiangyu SHAO1,2(), Min JIANG2, Xiaojing YANG1, Liang PU3, Gang LEI1, Jianliang GAO2
Received:
2023-08-16
Revised:
2023-09-23
Online:
2023-10-25
Published:
2023-12-22
Contact:
Xiangyu SHAO
摘要:
为了深入研究低温条件下受限空间内的氢气火焰传播规律及爆炸波特性,设计了爆炸腔体并对其预冷过程开展了研究。实验腔体采用双层结构,通过通入低温氮气来实现腔体预冷,以此保证低温氢气/空气预混气温度维持在设定实验温度。基于热力学基本理论,采用稳态法,建立了腔体预冷过程数学模型,分析了保温层与腔体壁厚对预冷过程的影响,探究了预冷介质流量对预冷时长、介质消耗量的影响规律。研究发现,保温层厚度达到30 mm时环境漏热显著降低;相较于10、5 mm壁厚工况,3 mm时预冷时长分别降低了70.11%、39.01%,消耗量分别降低了70.12%、39.00%;增大预冷介质流量,可以有效缩短预冷时长,但预冷介质消耗量的变化幅度不显著。
中图分类号:
邵翔宇, 蒋敏, 杨晓静, 蒲亮, 雷刚, 高建良. 低温氢气爆炸实验腔体预冷过程研究[J]. 化工学报, 2023, 74(10): 4343-4351.
Xiangyu SHAO, Min JIANG, Xiaojing YANG, Liang PU, Gang LEI, Jianliang GAO. Study on the precooling process of an experimental chamber for low temperature hydrogen explosion[J]. CIESC Journal, 2023, 74(10): 4343-4351.
1 | 殷伊琳. 我国氢能产业发展现状及展望[J]. 化学工业与工程, 2021, 38(4): 78-83. |
Yin Y L. Present situation and prospect of hydrogen energy industry[J]. Chemical Industry and Engineering, 2021, 38(4): 78-83. | |
2 | Pan A Q, Liu J, Liu Z P, et al. Application of hydrogen energy and review of current conditions[J]. IOP Conference Series: Earth and Environmental Science, 2020, 526(1): 012124. |
3 | Yang Y, Tong L G, Yin S W, et al. Status and challenges of applications and industry chain technologies of hydrogen in the context of carbon neutrality[J]. Journal of Cleaner Production, 2022, 376: 134347. |
4 | 韩红梅, 杨铮, 王敏, 等. 我国氢气生产和利用现状及展望[J]. 中国煤炭, 2021, 47(5): 59-63. |
Han H M, Yang Z, Wang M, et al. The current situation and prospect of hydrogen production and utilization in China[J]. China Coal, 2021, 47(5): 59-63. | |
5 | Duan Q L, Xiao H H, Gao W, et al. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section[J]. Journal of Hazardous Materials, 2016, 320: 18-26. |
6 | 肖华华, 孙金华. 高压氢气泄漏自燃研究现状及展望[J]. 安全与环境学报, 2009, 9(4): 125-129. |
Xiao H H, Sun J H. Advances and prospect of research on self-ignition caused by high-pressure hydrogen leak[J]. Journal of Safety and Environment, 2009, 9(4): 125-129. | |
7 | 巴清心, 赵明斌, 赵泽滢,等. 高压氢气射流火焰的数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(2): 303-311. |
Ba Q X, Zhao M B, Zhao Z Y, et al. Modeling of high pressure hydrogen jet fires[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(2): 303-311. | |
8 | Katsumi T, Aida T, Aiba K, et al. Outward propagation velocity and acceleration characteristics in hydrogen-air deflagration[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7360-7365. |
9 | Li H Z, Xiao H H, Sun J H. Laminar burning velocity, Markstein length, and cellular instability of spherically propagating NH3/H2/air premixed flames at moderate pressures[J]. Combustion and Flame, 2022, 241: 112079. |
10 | 肖华华. 管道中氢-空气预混火焰传播动力学实验与数值模拟研究[D]. 合肥: 中国科学技术大学, 2013. |
Xiao H H. Experimental and numerical simulation study on flame propagation dynamics of hydrogen-air premixing in pipeline[D]. Hefei: University of Science and Technology of China, 2013. | |
11 | Jo Y D, Crowl D A. Explosion characteristics of hydrogen-air mixtures in a spherical vessel[J]. Process Safety Progress, 2010, 29(3): 216-223. |
12 | Guo H S, Tayebi B, Galizzi C, et al. Burning rates and surface characteristics of hydrogen-enriched turbulent lean premixed methane-air flames[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11342-11348. |
13 | Verfondern K, Dienhart B. Experimental and theoretical investigation of liquid hydrogen pool spreading and vaporization[J]. International Journal of Hydrogen Energy, 1997, 22(7): 649-660. |
14 | 凡双玉, 何田田, 安刚, 等. 液氢泄漏扩散数值模拟研究[J]. 低温工程, 2016(6): 48-53. |
Fan S Y, He T T, An G, et al. Numerical simulation of liquid hydrogen leakage diffusion[J]. Cryogenics, 2016(6): 48-53. | |
15 | Jin T, Liu Y L, Wei J J, et al. Numerical investigation on the dispersion of hydrogen vapor cloud with atmospheric inversion layer[J]. International Journal of Hydrogen Energy, 2019, 44(41): 23513-23521. |
16 | Liu Y L, Liu Z, Wei J J, et al. Spread characteristics of hydrogen vapor cloud for liquid hydrogen spill under different source conditions[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4606-4613. |
17 | Pu L, Shao X Y, Zhang S Q, et al. Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage[J]. Asia-Pacific Journal of Chemical Engineering, 2019, 14(2): e2299. |
18 | Friedrich A, Breitung W, Stern G, et al. Ignition and heat radiation of cryogenic hydrogen jets[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17589-17598. |
19 | Panda P P, Hecht E S. Ignition and flame characteristics of cryogenic hydrogen releases[J]. International Journal of Hydrogen Energy, 2017, 42(1): 775-785. |
20 | Chowdhury B R, Hecht E S. Dispersion of cryogenic hydrogen through high-aspect ratio nozzles[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12311-12319. |
21 | Kobayashi H, Muto D, Daimon Y, et al. Experimental study on cryo-compressed hydrogen ignition and flame[J]. International Journal of Hydrogen Energy, 2020, 45(7): 5098-5109. |
22 | Cirrone D M C, Makarov D, Molkov V. Thermal radiation from cryogenic hydrogen jet fires[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8874-8885. |
23 | Jin L X, Cho H, Lee C, et al. Experimental research and numerical simulation on cryogenic line chill-down process[J]. Cryogenics, 2018, 89: 42-52. |
24 | 符锡理. 低温系统的预冷过程和计算[J]. 低温工程, 1998(2): 1-6. |
Fu X L. Precooling process of a cryogenic system and calculation of liquid requirement[J]. Cryogenics, 1998(2): 1-6. | |
25 | Darr S R, Hu H, Glikin N G, et al. An experimental study on terrestrial cryogenic transfer line chilldown (Ⅰ): Effect of mass flux, equilibrium quality, and inlet subcooling[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1225-1242. |
26 | 周霞, 刘丽, 邱利民, 等. 低温储罐预冷过程预测[J]. 低温工程, 2017(5): 35-41, 59. |
Zhou X, Liu L, Qiu L M, et al. Estimation of pre-cooling process of cryogen tank[J]. Cryogenics, 2017(5): 35-41, 59. | |
27 | Wang J J, Li Y Z, Wang L, et al. Transient modeling of cryogenic two-phase flow boiling during chill-down process[J]. Applied Thermal Engineering, 2018, 143: 461-471. |
28 | 卢超. LNG输运管道预冷过程仿真与分析[D]. 上海: 上海交通大学, 2013. |
Lu C. Simulation and analysis of precooling process of LNG transportation pipeline[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
29 | Lu J S, Xu S, Deng J J, et al. Numerical prediction of temperature field for cargo containment system (CCS) of LNG carriers during pre-cooling operations[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 382-391. |
30 | Johnson J, Shine S R. Transient cryogenic chill down process in horizontal and inclined pipes[J]. Cryogenics, 2015, 71: 7-17. |
31 | 张林辉. 大型LNG储罐预冷过程研究[D]. 广州: 华南理工大学, 2019. |
Zhang L H. Study on precooling process of large LNG storage tank[D]. Guangzhou: South China University of Technology, 2019. | |
32 | Başoğul Y, Demircan C, Keçebaş A. Determination of optimum insulation thickness for environmental impact reduction of pipe insulation[J]. Applied Thermal Engineering, 2016, 101: 121-130. |
33 | Kaynakli O. Economic thermal insulation thickness for pipes and ducts: a review study[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 184-194. |
34 | Kayfeci M. Determination of energy saving and optimum insulation thicknesses of the heating piping systems for different insulation materials[J]. Energy and Buildings, 2014, 69: 278-284. |
35 | Ertürk M. Optimum insulation thicknesses of pipes with respect to different insulation materials, fuels and climate zones in Turkey[J]. Energy, 2016, 113: 991-1003. |
36 | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. |
Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019. | |
37 | 郑立刚,朱小超,于水军,等. 浓度和点火位置对氢气-空气预混气爆燃特性影响[J]. 化工学报, 2019, 70(1): 408-416. |
Zheng L G, Zhu X C, Yu S J, et al. Effect of concentration and ignition position on characteristics of premixed hydrogen-air deflagration[J]. CIESC Journal, 2019, 70(1): 408-416. | |
38 | Kuznetsov M, Denkevits A, Veser A, et al. Flame propagation regimes and critical conditions for flame acceleration and detonation transition for hydrogen-air mixtures at cryogenic temperatures[J]. International Journal of Hydrogen Energy, 2022, 47(71): 30743-30756. |
39 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压力容器(合订本): ~GB 150.4—2011[S]. 北京: 中国标准出版社, 2011. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Pressure vessels(bound volume): ~GB 150.4—2011[S]. Beijing: Standards Press of China, 2011. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[7] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[8] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 232
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 197
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||