CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 5025-5034.DOI: 10.11949/0438-1157.20200797
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Xinjian LI(),Baolu WANG,Tian GAO,Qi WANG,Xuebin WANG()
Received:
2020-06-22
Revised:
2020-09-08
Online:
2020-11-05
Published:
2020-11-05
Contact:
Xuebin WANG
通讯作者:
王学斌
作者简介:
李鑫健(1996—),女,硕士研究生,2014—2018年在南京大学获学士学位,2018年至今在南京大学攻读硕士学位,基金资助:
CLC Number:
Xinjian LI,Baolu WANG,Tian GAO,Qi WANG,Xuebin WANG. Three-dimensional strutted graphene loading manganese oxide for supercapacitor[J]. CIESC Journal, 2020, 71(11): 5025-5034.
李鑫健,王保禄,高天,王旗,王学斌. 三维筋撑石墨烯负载氧化锰的超级电容器[J]. 化工学报, 2020, 71(11): 5025-5034.
Add to citation manager EndNote|Ris|BibTeX
电极材料 | 电流/ (A·g-1) | 比电容量/ (F·g-1) | 文献 |
---|---|---|---|
MnO2/3DG | 0.25 | 236 | [ |
MnO2/R-GO@Ni-foam | 0.25 | 267 | [ |
MnO2/Graphene paper | 0.5 | 256 | [ |
MnO2/GH | 0.5 | 293.7 | [ |
MnO2/rGO/Ni foam | 0.5 | 288 | [ |
MnO2/3DHG | 0.5 | 192.2 | [ |
MnO2-rGO-CNTs | 0.6 | 124 | [ |
MnO2/GH | 1 | 200.6 | [ |
MnO2/GA | 1 | 275 | [ |
MnO2/SG | 0.5 | 348.5 | this work |
Table 1 Comparison of capacitance of manganese oxide and three dimensional graphene hybrid materials
电极材料 | 电流/ (A·g-1) | 比电容量/ (F·g-1) | 文献 |
---|---|---|---|
MnO2/3DG | 0.25 | 236 | [ |
MnO2/R-GO@Ni-foam | 0.25 | 267 | [ |
MnO2/Graphene paper | 0.5 | 256 | [ |
MnO2/GH | 0.5 | 293.7 | [ |
MnO2/rGO/Ni foam | 0.5 | 288 | [ |
MnO2/3DHG | 0.5 | 192.2 | [ |
MnO2-rGO-CNTs | 0.6 | 124 | [ |
MnO2/GH | 1 | 200.6 | [ |
MnO2/GA | 1 | 275 | [ |
MnO2/SG | 0.5 | 348.5 | this work |
1 | Xia J, Chen F, Li J, et al. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology, 2009, 4(8): 505-509. |
2 | Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials, 2015, 14: 271-279. |
3 |
Huang H B, Shi H D, Das P, et al. The chemistry and promising applications of graphene and porous graphene materials[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.201909035.
DOI URL |
4 | Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors[J]. Journal of Chemical Sciences, 2008, 120(1): 9-13. |
5 | Stoller M D, Park S, Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. |
6 |
高天, 肖庆林, 许晨阳, 等. 发泡法制备二维材料泡沫体的进展[J]. 无机材料学报, 2020, doi: 10.15541/jim20200096.
DOI URL |
Gao T, Xiao Q L, Xu C Y, et al. Blowing route to fabricate foams of 2D materials[J]. Journal of Inorganic Materials, 2020, doi: 10.15541/jim20200096.
DOI URL |
|
7 | Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330. |
8 | Choi B G, Yang M H, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano, 2012, 6(5): 4020-4028. |
9 | Zhu C, Han T Y J, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications, 2015, 6: 6962. |
10 | Shao Y L, El-Kady M F, Lin C W, et al. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors[J]. Advanced Materials, 2016, 28(31): 6719-6726. |
11 | Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10: 424-428. |
12 | Zhao J, Lai H W, Lyu Z Y, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance[J]. Advanced Materials, 2015, 27(23): 3541-3545. |
13 | Li N, Yang G Z, Sun Y, et al. Free-standing and transparent graphene membrane of polyhedron box-shaped basic building units directly grown using a NaCl template for flexible transparent and stretchable solid-state supercapacitors[J]. Nano Letters, 2015, 15(5): 3195-3203. |
14 | Wang X B, Zhang Y J, Zhi C Y, et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors[J]. Nature Communications, 2013, 4: 2905. |
15 | El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330. |
16 | Jiang X F, Li R Q, Hu M, et al. Zinc-tiered synthesis of 3D graphene for monolithic electrodes[J]. Advanced Materials, 2019, 31(25): 1901186. |
17 | Wang C W, Wang Y, Graser J, et al. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis[J]. ACS Nano, 2013, 7(12): 11156-11165. |
18 | Ge J, Yao H B, Hu W, et al. Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes[J]. Nano Energy, 2013, 2(4): 505-513. |
19 | Xie L J, Su F Y, Xie L F, et al. Self-assembled 3D graphene-based aerogel with Co3O4 nanoparticles as high-performance asymmetric supercapacitor electrode[J]. ChemSusChem, 2015, 8(17): 2917-2926. |
20 | Qiu B C, Xing M Y, Zhang J L. Stöber-like method to synthesize ultralight, porous, stretchable Fe2O3/graphene aerogels for excellent performance in photo-Fenton reaction and electrochemical capacitors[J]. Journal of Materials Chemistry A, 2015, 3(24): 12820-12827. |
21 | Meng X Q, Zhu J W, Bi H P, et al. Three-dimensional nickel hydroxide/graphene composite hydrogels and their transformation to NiO/graphene composites for energy storage[J]. Journal of Materials Chemistry A, 2015, 3(43): 21682-21689. |
22 | Patil U M, Nam M S, Sohn J S, et al. Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(44): 19075-19083. |
23 | Park H, Kim J W, Hong S Y, et al. Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors[J]. Advanced Functional Materials, 2018, 28(33): 1707013. |
24 | Zhang Q E, Zhou A A, Wang J J, et al. Degradation-induced capacitance: a new insight into the superior capacitive performance of polyaniline/graphene composites[J]. Energy & Environmental Science, 2017, 10(11): 2372-2382. |
25 | Fic K, Lota G, Meller M, et al. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors[J]. Energy & Environmental Science, 2012, 5(2): 5842-5850. |
26 | Wu Q, Yang L J, Wang X Z, et al. Carbon-based nanocages: a new platform for advanced energy storage and conversion[J]. Advanced Materials, 2020, 32(27): 1904177. |
27 | Wang J G, Kang F Y, Wei B Q. Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science, 2015, 74: 51-124. |
28 | Wei B, Wang L, Wang Y, et al. In situ growth of manganese oxide on 3D graphene by a reverse microemulsion method for supercapacitors[J]. Journal of Power Sources, 2016, 307: 129-137. |
29 | Wagner C D, Zatko D A, Raymond R H. Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis[J]. Analytical Chemistry, 1980, 52(9): 1445-1451. |
30 | Beng J T, Kenneth J K, Peter M A S. XPS studies of solvated metal atom dispersed catalysts. Evidence for layered cobalt-manganese particles on alumina and silica[J]. Journal of the American Chemical Society, 1991, 113(3): 855-861. |
31 | Meng X, Lu L, Sun C. Green synthesis of three-dimensional MnO2/graphene hydrogel composite as a high-performance electrode material for supercapacitors [J]. ACS Applied Materials & Interfaces, 2018, 10: 11474-11481. |
32 | Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7: 845-854. |
33 | Zhu X L, Zhang P, Xu S, et al. Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11665-11674. |
34 | Li Y, Wang G, Ye K, et al. Facile preparation of three-dimensional multilayer porous MnO2/reduced graphene oxide composite and its supercapacitive performance[J]. Journal of Power Sources, 2014, 271: 582-588. |
35 | Li Z P, Mi Y J, Liu X H, et al. Flexible graphene/MnO2 composite papers for supercapacitor electrodes[J]. Journal of Materials Chemistry, 2011, 21(38): 14706-14711. |
36 | Yang B Y, Jin X, Wang Y, et al. In-situ growth of flower-like MnO2/graphene hydrogel mesoporous electrode material for supercapacitors[J]. Integrated Ferroelectrics, 2020, 206(1): 87-95. |
37 | Zhao Z Y, Shen T, Liu Z H, et al. Facile fabrication of binder-free reduced graphene oxide/MnO2/Ni foam hybrid electrode for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2020, 812: 152124. |
38 | Chai Y Q, Li Z P, Wang J Q, et al. Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors[J]. Journal of Alloys and Compounds, 2019, 775: 1206-1212. |
39 | Rogier C, Pognon G, Bondavalli P, et al. Electrodeposition of MnO2 on spray-coated nanostructured carbon framework as high performance material for energy storage[J]. Surface & Coatings Technology, 2020, 384: 125310. |
40 | Ma C X, Wang R X, Tetik H, et al. Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems[J]. Nano Energy, 2019, 66: 104124. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[11] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[12] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[13] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[14] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[15] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||