CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4484-4497.DOI: 10.11949/0438-1157.20220507
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Shide WU1,2(), Feng YI2, Dan PING2(), Yifei ZHANG2, Jian HAO3, Guoji LIU1(), Shaoming FANG2
Received:
2022-04-07
Revised:
2022-09-28
Online:
2022-11-02
Published:
2022-10-05
Contact:
Dan PING, Guoji LIU
吴诗德1,2(), 易峰2, 平丹2(), 张逸飞2, 郝健3, 刘国际1(), 方少明2
通讯作者:
平丹,刘国际
作者简介:
吴诗德(1979—),男,博士研究生,副教授,wushide@zzuli.edu.cn
基金资助:
CLC Number:
Shide WU, Feng YI, Dan PING, Yifei ZHANG, Jian HAO, Guoji LIU, Shaoming FANG. NH4Cl assisted preparation of Ni-N-CNTs catalyst and its performance for electrochemical CO2 reduction[J]. CIESC Journal, 2022, 73(10): 4484-4497.
吴诗德, 易峰, 平丹, 张逸飞, 郝健, 刘国际, 方少明. NH4Cl辅助热解制备镍-氮-碳纳米管催化剂及其电还原CO2性能[J]. 化工学报, 2022, 73(10): 4484-4497.
样品 | 比表面积/ (m2·g-1) | 孔隙体积/ (cm3·g-1) | 孔隙直径/nm |
---|---|---|---|
Ni-N-CNTs | 448.24 | 0.97 | 8.35 |
Ni-N-CNTs-1/3 | 320.10 | 0.58 | 6.79 |
Ni-N-CNTs-1 | 333.48 | 1.00 | 11.07 |
Ni-N-CNTs-3 | 272.88 | 0.24 | 4.05 |
Table1 The specific surface areas and textural properties of prepared catalysts
样品 | 比表面积/ (m2·g-1) | 孔隙体积/ (cm3·g-1) | 孔隙直径/nm |
---|---|---|---|
Ni-N-CNTs | 448.24 | 0.97 | 8.35 |
Ni-N-CNTs-1/3 | 320.10 | 0.58 | 6.79 |
Ni-N-CNTs-1 | 333.48 | 1.00 | 11.07 |
Ni-N-CNTs-3 | 272.88 | 0.24 | 4.05 |
样品 | XPS | Ni(ICP-OES)/% (mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
C/%(mol(mass)) | N/%(mol(mass)) | Ni/%(mol(mass)) | N/%(mol) | Ni n+/Ni0 | |||||
Ni-Nx | Graphitic-N | Pyrrolic-N | Pyridinic-N | ||||||
Ni-N-CNTs | 84.36(77.99) | 6.17(6.65) | 1.12(5.06) | 1.09 | 2.31 | 2.23 | 1.15 | 0.97 | 18.12 |
Ni-N-CNTs-1/3 | 87.32(82.56) | 6.5(7.08) | 0.87(3.97) | 1.18 | 2.06 | 1.65 | 1.65 | 1.42 | 13.82 |
Ni-N-CNTs-1 | 87.44(81.58) | 7.86(8.56) | 1.21(5.11) | 1.60 | 2.46 | 2.06 | 1.75 | 1.59 | 16.1 |
Ni-N-CNTs-3 | 87.19(81.04) | 7.45(8.08) | 1.08(4.91) | 1.43 | 2.03 | 2.00 | 2.01 | 1.22 | 10.8 |
Table 2 Summary contents of various species in the prepared catalysts
样品 | XPS | Ni(ICP-OES)/% (mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
C/%(mol(mass)) | N/%(mol(mass)) | Ni/%(mol(mass)) | N/%(mol) | Ni n+/Ni0 | |||||
Ni-Nx | Graphitic-N | Pyrrolic-N | Pyridinic-N | ||||||
Ni-N-CNTs | 84.36(77.99) | 6.17(6.65) | 1.12(5.06) | 1.09 | 2.31 | 2.23 | 1.15 | 0.97 | 18.12 |
Ni-N-CNTs-1/3 | 87.32(82.56) | 6.5(7.08) | 0.87(3.97) | 1.18 | 2.06 | 1.65 | 1.65 | 1.42 | 13.82 |
Ni-N-CNTs-1 | 87.44(81.58) | 7.86(8.56) | 1.21(5.11) | 1.60 | 2.46 | 2.06 | 1.75 | 1.59 | 16.1 |
Ni-N-CNTs-3 | 87.19(81.04) | 7.45(8.08) | 1.08(4.91) | 1.43 | 2.03 | 2.00 | 2.01 | 1.22 | 10.8 |
Fig.7 The LSV curves, FECO and jCO of prepared catalysts, the stability test of Ni-N-CNTs-1 at -0.65 V(vs RHE)and the LSV curves of Ni-N-CNT-1 before and after the stability test
Electrocatalyst | Cathode material | Electrolyte(pH) | FECO/% | Potential (vs RHE)/V | (mA·cm-2) | Ref. |
---|---|---|---|---|---|---|
Meso NC-Fe | glassy carbon | 0.5 mol·L-1 KHCO3 (7.2) | 85.0 | -0.73 | 3.7 | [ |
SA-Ni@NC | glassy carbon | 0.5 mol·L-1 KHCO3 (7.2) | 86.2 | -0.60 | 1.78 | [ |
NiSA-N-CNTs | carbon paper | 0.5 mol·L-1 KHCO3 (7.2) | 92 | -0.70 | 23.5 | [ |
Ni SAs/N-C | carbon paper | 0.5 mol·L-1 KHCO3 (7.2) | 70.3 | -1.00 | 7.37 | [ |
Fe-N/O-C (MZ) | carbon paper | 0.1 mol·L-1 KHCO3 (6.8) | 95.5 | -0.57 | 5.6 | [ |
FeMn-N-C | glassy carbon plate | 0.1 mol·L-1 KHCO3 (6.8) | 84.0 | -0.51 | 1.8 | [ |
CATpyr/CNT | glassy carbon plate | 0.5 mol·L-1 KHCO3(7.2) | 93 | -0.59 | 0.24 | [ |
CoPc@HCS-9 | carbon fiber paper | 0.5 mol·L-1 KHCO3 (7.2) | 88 | -0.87 | 6.5 | [ |
Ni-N-CNTs-1 | glassy carbon | 0.5 mol·L-1 KHCO3 (7.2) | 92.0 | -0.65 | 8.0 | this work |
Table 3 Performance comparison of CO2RR catalysts reported in recent years
Electrocatalyst | Cathode material | Electrolyte(pH) | FECO/% | Potential (vs RHE)/V | (mA·cm-2) | Ref. |
---|---|---|---|---|---|---|
Meso NC-Fe | glassy carbon | 0.5 mol·L-1 KHCO3 (7.2) | 85.0 | -0.73 | 3.7 | [ |
SA-Ni@NC | glassy carbon | 0.5 mol·L-1 KHCO3 (7.2) | 86.2 | -0.60 | 1.78 | [ |
NiSA-N-CNTs | carbon paper | 0.5 mol·L-1 KHCO3 (7.2) | 92 | -0.70 | 23.5 | [ |
Ni SAs/N-C | carbon paper | 0.5 mol·L-1 KHCO3 (7.2) | 70.3 | -1.00 | 7.37 | [ |
Fe-N/O-C (MZ) | carbon paper | 0.1 mol·L-1 KHCO3 (6.8) | 95.5 | -0.57 | 5.6 | [ |
FeMn-N-C | glassy carbon plate | 0.1 mol·L-1 KHCO3 (6.8) | 84.0 | -0.51 | 1.8 | [ |
CATpyr/CNT | glassy carbon plate | 0.5 mol·L-1 KHCO3(7.2) | 93 | -0.59 | 0.24 | [ |
CoPc@HCS-9 | carbon fiber paper | 0.5 mol·L-1 KHCO3 (7.2) | 88 | -0.87 | 6.5 | [ |
Ni-N-CNTs-1 | glassy carbon | 0.5 mol·L-1 KHCO3 (7.2) | 92.0 | -0.65 | 8.0 | this work |
Fig.8 CV curves of prepared catalysts at different scan rates, the capacitive current (Δj) against the scan rate at -0.07 V (vs RHE) and the Tafel plots
Fig.10 The catalytic performance of Ni-N-CNTs-1 electrocatalyst with or without KSCN treatment, and after soaking in 2 mol·L-1 H3PO4 for different time, the relationship between the contents of Ni-Nx and pyridinic-N with FECO, and the proposed mechanism for CO2RR to CO on prepared electrocatalysts
1 | Zhang X L, Guo S X, Gandionco K A, et al. Electrocatalytic carbon dioxide reduction: from fundamental principles to catalyst design[J]. Materials Today Advances, 2020, 7: 100074. |
2 | 任静, 谭玲, 赵宇飞, 等. 超薄二维材料光/电催化CO2还原的最新进展[J]. 化工学报, 2021, 72(1): 398-424. |
Ren J, Tan L, Zhao Y F, et al. Latest development of ultrathin two-dimensional materials for photocatalytic and electrocatalytic CO2 reduction[J]. CIESC Journal, 2021, 72(1): 398-424. | |
3 | Kim J, Song J T, Ryoo H, et al. Morphology-controlled Au nanostructures for efficient and selective electrochemical CO2 reduction[J]. Journal of Materials Chemistry A, 2018, 6(12): 5119-5128. |
4 | Chen D, Yao Q, Cui P L, et al. Tailoring the selectivity of bimetallic copper-palladium nanoalloys for electrocatalytic reduction of CO2 to CO[J]. ACS Applied Energy Materials, 2018, 1(2): 883-890. |
5 | Xie H, Wan Y Y, Wang X M, et al. Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites[J]. Applied Catalysis B: Environmental, 2021, 289: 119783. |
6 | Luo W, Zhang Q, Zhang J, et al. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO[J]. Applied Catalysis B: Environmental, 2020, 273: 119060. |
7 | Li Z, He D, Yan X, et al. Size-dependent nickel-based electrocatalysts for selective CO2 reduction[J]. Angewandte Chemie (International Ed. in English), 2020, 59(42): 18572-18577. |
8 | Lu P L, Zhang J X, He H X, et al. Iron/nickel nano-alloy encapsulated in nitrogen-doped carbon framework for CO2 electrochemical conversion with prominent CO selectivity[J]. Journal of Power Sources, 2020, 449: 227496. |
9 | Fan Q, Hou P F, Choi C, et al. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2 [J]. Advanced Energy Materials, 2020, 10(5): 1903068. |
10 | Ping D, Huang S G, Wu S D, et al. LDHs-based bifunctional electrocatalyst for effective tunable syngas generation via CO2 reduction[J]. International Journal of Hydrogen Energy, 2022, 47(56): 23653-23660. |
11 | Jia C, Tan X, Zhao Y, et al. Sulfur-dopant-promoted electroreduction of CO2 over coordinatively unsaturated Ni-N2 moieties[J]. Angewandte Chemie International Edition, 2021, 60(43): 23342-23348. |
12 | Lin L, Li H B, Wang Y, et al. Temperature-dependent CO2 electroreduction over Fe-N-C and Ni-N-C single-atom catalysts[J]. Angewandte Chemie International Edition, 2021, 60(51): 26582-26586. |
13 | Jiang P F, Jiang K Y, Tranca D N, et al. Rational control of topological defects in porous carbon for high-efficiency carbon dioxide conversion[J]. Advanced Materials Interfaces, 2021, 8(7): 2100051. |
14 | Xiong W F, Li H F, Wang H M, et al. Hollow mesoporous carbon sphere loaded Ni-N4 single-atom: support structure study for CO2 electrocatalytic reduction catalyst[J]. Small, 2020, 16(41): 2003943. |
15 | 董灵玉, 葛睿, 原亚飞, 等. 多孔炭基二氧化碳电催化材料研究进展[J]. 化工学报, 2020, 71(6): 2492-2509. |
Dong L Y, Ge R, Yuan Y F, et al. Recent advances in porous carbon-based carbon dioxide electrocatalytic materials[J]. CIESC Journal, 2020, 71(6): 2492-2509. | |
16 | Sheng J, Li Y. Applications of carbon nanotubes in oxygen electrocatalytic reactions[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 20455-20462. |
17 | Zhang C, Chen G Y, Zhang R X, et al. Charge modulation of CNTs-based conductive network for oxygen reduction reaction and microwave absorption[J]. Carbon, 2021, 178(35): 310-319. |
18 | Hou P X, Zhang F, Zhang L L, et al. Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications[J]. Advanced Functional Materials, 2022, 32(11): 2270066. |
19 | Lu P L, Yang Y J, Yao J N, et al. Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 241: 113-119. |
20 | Shen S J, Han C, Wang B, et al. Self-supported nickel single atoms overwhelming the concomitant nickel nanoparticles enable efficient and selective CO2 electroreduction[J]. Advanced Materials Interfaces, 2021, 8(20): 2101542. |
21 | Gao C B, LYu F L, Yin Y D. Encapsulated metal nanoparticles for catalysis[J]. Chemical Reviews, 2021, 121(2): 834-881. |
22 | Niu Y J, Zhang C H, Wang Y Y, et al. Confining chainmail-bearing Ni nanoparticles in N-doped carbon nanotubes for robust and efficient electroreduction of CO2 [J]. ChemSusChem, 2021, 14(4): 1140-1154. |
23 | Hu C, Mu Y, Bai S L, et al. Polyvinyl pyrrolidone mediated fabrication of Fe, N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction[J]. Carbon, 2019, 153: 609-616. |
24 | Guo Y, Yang H J, Zhou X, et al. Electrocatalytic reduction of CO2 to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks[J]. Journal of Materials Chemistry A, 2017, 5(47): 24867-24873. |
25 | Zhu Z Z, Li Z, Wei X X, et al. Achieving efficient electroreduction of CO2 to CO in a wide potential window by encapsulating Ni nanoparticles in N-doped carbon nanotubes[J]. Carbon, 2021, 185: 9-16. |
26 | Ding C M, Feng C C, Mei Y H, et al. Carbon nitride embedded with transition metals for selective electrocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2020, 268: 118391. |
27 | Zhao X Y, Huang S H, Chen Z Y, et al. Carbon nanosheets supporting Ni-N3S single-atom sites for efficient electrocatalytic CO2 reduction[J]. Carbon, 2021, 178: 488-496. |
28 | Wu S D, Lv X N, Ping D, et al. Highly exposed atomic Fe-N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO[J]. Electrochimica Acta, 2020, 340: 135930. |
29 | Liang S Y, Jiang Q, Wang Q, et al. Revealing the real role of nickel decorated nitrogen doped carbon catalysts for electrochemical reduction of CO2 to CO[J]. Advanced Energy Materials, 2021, 11(36): 2101477. |
30 | Li P B, Qi X Q, Zhao L, et al. Hierarchical 3D porous carbon with facilely accessible Fe-N4 single-atom sites for Zn-air batteries[J]. Journal of Materials Chemistry A, 2022, 10(11): 5925-5929. |
31 | Lu Y, Wang H J, Yu P F, et al. Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction[J]. Nano Energy, 2020, 77:105158. |
32 | Wu S D, Yi F, Ping D, et al. Constructing single-atomic nickel sites in carbon nanotubes for efficient CO2 electroreduction[J]. Carbon, 2022, 196: 1-9. |
33 | Wu W, Zhang W, Long Y, et al. MOF-derived Fe-N-C with interconnected mesoporous structure for halonitrobenzenes hydrogenation: role of dicyandiamide on the growth of active sites and pore structure[J]. Microporous and Mesoporous Materials, 2021, 328: 111472. |
34 | Liu Y Z, Li C H, Loubidi M, et al. Increasing exposure of atomically dispersed Ni sites via constructing hierarchically porous supports for enhanced electrochemical CO2 reduction[J]. Chemical Engineering Journal, 2021, 426: 131414. |
35 | Han S G, Ma D D, Zhou S H, et al. Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction[J]. Applied Catalysis B: Environmental, 2021, 283: 119591. |
36 | Sun X H, Wang R M, Ould-Chikh S, et al. Structure-activity relationships in metal organic framework derived mesoporous nitrogen-doped carbon containing atomically dispersed iron sites for CO2 electrochemical reduction[J]. Journal of Catalysis, 2019, 378: 320-330. |
37 | Zhang C, Fu Z H, Zhao Q, et al. Single-atom-Ni-decorated, nitrogen-doped carbon layers for efficient electrocatalytic CO2 reduction reaction[J]. Electrochemistry Communications, 2020, 116: 106758. |
38 | Cheng Y, Zhao S Y, Johannessen B, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction[J]. Advanced Materials, 2018, 30(13): 1706287. |
39 | Zhao C M, Dai X Y, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2 [J]. Journal of the American Chemical Society, 2017, 139(24) : 8078-8081. |
40 | Wang X S, Pan Y Y, Ning H, et al. Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction[J]. Applied Catalysis B: Environmental, 2020, 266: 118630. |
41 | Varela A S, Ranjbar S N, Steinberg J, et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons[J]. Angewandte Chemie International Edition, 2015, 54(37): 10758-10762. |
42 | Maurin A, Robert M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water[J]. Journal of the American Chemical Society, 2016, 138(8): 2492-2495. |
43 | Gong S H, Wang W B, Xiao X X, et al. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion[J]. Nano Energy, 2021, 84: 105904. |
44 | Miao Z C, Meng J, Liang M F, et al. In-situ CVD synthesis of Ni@N-CNTs/carbon paper electrode for electro-reduction of CO2 [J]. Carbon, 2021, 172: 324-333. |
45 | Tan D X, Cui C N, Shi J B, et al. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide[J]. Nano Research, 2019, 12(5): 1167-1172. |
46 | Zhang S Y, Yang Y Y, Zheng Y Q, et al. Ag-doped Co3O4 catalyst derived from heterometallic MOF for syngas production by electrocatalytic reduction of CO2 in water[J]. Journal of Solid State Chemistry, 2018, 263: 44-51. |
47 | Wang X Y, Feng S H, Lu W C, et al. A new strategy for accelerating dynamic proton transfer of electrochemical CO2 reduction at high current densities[J]. Advanced Functional Materials, 2021, 31(50): 2104243. |
48 | Liu S, Yang H B, Huang X, et al. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction[J]. Advanced Functional Materials, 2018, 28(21):1800499. |
49 | Ma C, Hou P F, Wang X P, et al. Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction[J]. Applied Catalysis B: Environmental, 2019, 250: 347-354. |
50 | Lu Q, Chen C, Di Q, et al. Dual role of pyridinic-N doping in carbon-coated Ni nanoparticles for highly efficient electrochemical CO2 reduction to CO over a wide potential range[J]. ACS Catalysis, 2022, 12(2): 1364-1374. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[3] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[4] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[5] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[6] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[7] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[8] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[9] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[10] | Kaihong TANG, Xiaofeng HE, Guiqiu XU, Yang YU, Xiaofeng LIU, Tiejun GE, Ailing ZHANG. Review on combustion behavior and flame retardant research of phenolic foams [J]. CIESC Journal, 2022, 73(8): 3483-3500. |
[11] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[12] | Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts [J]. CIESC Journal, 2022, 73(7): 3026-3037. |
[13] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[14] | Guanyi CHEN, Tujun TONG, Rui LI, Yanshan WANG, Beibei YAN, Ning LI, Li'an HOU. Influence of pyrolysis time on sludge-derived biochar performance for peroxymonosulfate activation [J]. CIESC Journal, 2022, 73(5): 2111-2119. |
[15] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||