CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1794-1806.DOI: 10.11949/0438-1157.20211503
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Hang GUO(),Wenli HAN,Xiaoling DONG,Wencui LI()
Received:
2021-10-21
Revised:
2022-02-14
Online:
2022-04-25
Published:
2022-04-05
Contact:
Wencui LI
通讯作者:
李文翠
作者简介:
郭行(2000—),男,硕士研究生,基金资助:
CLC Number:
Hang GUO, Wenli HAN, Xiaoling DONG, Wencui LI. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode[J]. CIESC Journal, 2022, 73(4): 1794-1806.
郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806.
1 | Chen H, Xu B B, Ping Q S, et al. Co2B2O5 as an anode material with high capacity for sodium ion batteries[J]. Rare Metals, 2020, 39(9): 1045-1052. |
2 | Zhao S Q, Guo Z Q, Yang J, et al. Nanoengineering of advanced carbon materials for sodium-ion batteries[J]. Small, 2021, 17(48): 2007431. |
3 | Lian P J, Zhao B S, Zhang L Q, et al. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries[J]. Journal of Materials Chemistry A, 2019, 7(36): 20540-20557. |
4 | 孙宁. 钠离子电池硬炭负极材料和电极的研究[D]. 北京: 北京化工大学, 2019. |
Sun N. Hard carbon anode materials and electrodes for sodium ion batteries[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
5 | Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
6 | Xia J L, Lu A H, Yu X F, et al. Rational design of a trifunctional binder for hard carbon anodes showing high initial coulombic efficiency and superior rate capability for sodium-ion batteries[J]. Advanced Functional Materials, 2021, 31(40): 2104137. |
7 | Pu X J, Wang H M, Zhao D, et al. Recent progress in rechargeable sodium-ion batteries: toward high-power applications[J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(32): e1805427. |
8 | 李云明. 钠离子储能电池碳基负极材料研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2017. |
Li Y M. Studies on carbon-based anode materials for sodium-ion stationary batteries[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2017. | |
9 | Yang B, Wang J, Zhu Y Y, et al. Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries[J]. Journal of Power Sources, 2021, 492: 229656. |
10 | Abou-Rjeily J, Laziz N A, Autret-Lambert C, et al. Towards valorizing natural coals in sodium-ion batteries: impact of coal rank on energy storage[J]. Scientific Reports, 2020, 10: 15871. |
11 | Li Y M, Hu Y S, Qi X G, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications[J]. Energy Storage Materials, 2016, 5: 191-197. |
12 | Wang B Y, Xia J L, Dong X L, et al. Highly purified carbon derived from deashed anthracite for sodium-ion storage with enhanced capacity and rate performance[J]. Energy & Fuels, 2020, 34(12): 16831-16837. |
13 | Lu H Y, Sun S F, Xiao L F, et al. High-capacity hard carbon pyrolyzed from subbituminous coal as anode for sodium-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(1): 729-735. |
14 | Xia J L, Yan D, Guo L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials (Deerfield Beach, Fla.), 2020, 32(21): e2000447. |
15 | 张双全. 煤化学[M]. 4版. 徐州: 中国矿业大学出版社, 2015: 159-164. |
Zhang S Q. Coal Chemistry[M]. 4th ed. Xuzhou: China University of Mining & Technology Press, 2015: 159-164. | |
16 | 王博阳, 夏吉利, 董晓玲, 等. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750. |
Wang B Y, Xia J L, Dong X L, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal, 2021, 72(11): 5738-5750. | |
17 | Sun Y, Lu P, Liang X, et al. High-yield microstructure-controlled amorphous carbon anode materials through a pre-oxidation strategy for sodium ion batteries[J]. Journal of Alloys and Compounds, 2019, 786: 468-474. |
18 | Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742. |
19 | Xiong Y K, Jin L J, Li Y, et al. Hydrogen peroxide oxidation degradation of a low-rank Naomaohu coal[J]. Fuel Processing Technology, 2020, 207: 106484. |
20 | Liu X F, Song D Z, He X Q, et al. Insight into the macromolecular structural differences between hard coal and deformed soft coal[J]. Fuel, 2019, 245: 188-197. |
21 | Cao Y L, Xiao L F, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787. |
22 | Li Y M, Mu L Q, Hu Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 2: 139-145. |
23 | Qi Y R, Lu Y X, Ding F X, et al. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries[J]. Angewandte Chemie (International Ed. in English), 2019, 58(13): 4361-4365. |
24 | Chen C, Huang Y, Lu M W, et al. Tuning morphology, defects and functional group types in hard carbon via phosphorus doped for rapid sodium storage[J]. Carbon, 2021, 183: 415-427. |
25 | Xie F, Xu Z, Guo Z Y, et al. Hard carbons for sodium-ion batteries and beyond[J]. Progress in Energy, 2020, 2(4): 042002. |
26 | Zhao L F, Hu Z, Lai W H, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts[J]. Advanced Energy Materials, 2021, 11(1): 2002704. |
27 | Lu P, Sun Y, Xiang H F, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): 1702434. |
28 | Zhu Y Y, Chen M M, Li Q, et al. A porous biomass-derived anode for high-performance sodium-ion batteries[J]. Carbon, 2018, 129: 695-701. |
29 | Cao B, Liu H, Xu B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. Journal of Materials Chemistry A, 2016, 4(17): 6472-6478. |
30 | Wang P Z, Zhu X S, Wang Q Q, et al. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(12): 5761-5769. |
31 | Sun F, Wang H, Qu Z B, et al. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: synergistic enhancement of adsorption and intercalation mechanisms[J]. Advanced Energy Materials, 2021, 11(1): 2002981. |
32 | Kang M M, Zhao H Q, Ye J Q, et al. Adsorption dominant sodium storage in three-dimensional coal-based graphite microcrystal/graphene composites[J]. Journal of Materials Chemistry A, 2019, 7(13): 7565-7572. |
33 | Xiao N, Wei Y B, Li H Q, et al. Boosting the sodium storage performance of coal-based carbon materials through structure modification by solvent extraction[J]. Carbon, 2020, 162: 431-437. |
34 | Wang T, Wang Y B, Cheng G, et al. Catalytic graphitization of anthracite as an anode for lithium-ion batteries[J]. Energy & Fuels, 2020, 34(7): 8911-8918. |
35 | Chen C, Huang Y, Meng Z Y, et al. N/O/P-rich three-dimensional carbon network for fast sodium storage[J]. Carbon, 2020, 170: 225-235. |
36 | Deng X L, Wei Z X, Cui C Y, et al. Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage[J]. Journal of Materials Chemistry A, 2018, 6(9): 4013-4022. |
37 | Kim H, Sadan M K, Kim C, et al. Simple and scalable synthesis of CuS as an ultrafast and long-cycling anode for sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(27): 16239-16248. |
38 | Gu H C, Yang L P, Zhang Y, et al. Highly reversible alloying/dealloying behavior of SnSb nanoparticles incorporated into N-rich porous carbon nanowires for ultra-stable Na storage[J]. Energy Storage Materials, 2019, 21: 203-209. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[6] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[7] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[8] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[11] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[12] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 397
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 515
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||