化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 146-154.doi: 10.11949/0438-1157.20190420

• 流体力学与传递现象 • 上一篇    下一篇

PEMFC冷却剂循环条件下冷启动数值模拟

魏琳1,2,3(),廖梓豪1,2,3,4,蒋方明1,2,3()   

  1. 1. 中国科学院广州能源研究所,广东 广州 510640
    2. 中国科学院可再生能源重点实验室,广东 广州 510640
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州 510640
    4. 中国科学院大学,北京 100049
  • 收稿日期:2019-04-23 修回日期:2019-05-30 出版日期:2019-09-06 发布日期:2019-09-06
  • 通讯作者: 蒋方明 E-mail:weilin@ms.giec.ac.cn;jiangfm@ms.giec.ac.cn
  • 作者简介:魏琳(1988—),女,博士,助理研究员,weilin@ms.giec.ac.cn
  • 基金资助:
    广东省自然科学基金项目(2017A000310186);上海汽车工业科技发展基金会项目(1706)

Numerical study on cold start of PEMFC with coolant circulation

Lin WEI1,2,3(),Zihao LIAO1,2,3,4,Fangming JIANG1,2,3()   

  1. 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, Guangdong, China
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong, China
    4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-04-23 Revised:2019-05-30 Published:2019-09-06 Online:2019-09-06
  • Contact: Fangming JIANG E-mail:weilin@ms.giec.ac.cn;jiangfm@ms.giec.ac.cn

摘要:

质子交换膜燃料电池(PEMFC)具有高能量比、环境友好、工作温度低等优点,可用作未来新能源汽车的能量来源,具有很好的发展前景。然而零下温度启动时,电池内水结冰堵塞通道,严重影响电池启动性能及寿命。提出了PEMFC冷启动三维多物理场数值模型,考虑了冷却剂流动与传热的影响,对冷启动过程组分浓度、电势、温度、含冰量等参数进行了可视化分析。数值模拟结果与试验吻合良好,表明模型可用于预测电池冷启动性能并用于机理研究。

关键词: 燃料电池, 冷启动, 冷却剂, 数值模拟, 计算流体力学

Abstract:

Proton exchange membrane fuel cells (PEMFC) show great potential to be considered as a renewable power system for future automobile applications due to their high power density and low operating temperature. However, a successful startup from subfreezing temperatures is a major challenge for the commercialization of PEMFC. In this research, a three-dimensional electrochemical-transport coupled model is developed. The model accounts the flow and heat transfer of the coolant during the cold start process. A detailed visualization analysis is conducted to illustrate the effects of a coolant system on the cold start performance. Our results include reactants concentration profiles, voltage curves, temperature distribution, and ice formation. The model validation results show good agreement between the model prediction and experimental data. Therefore, the model can be used to achieve a better understanding of PEMFCs cold start behavior.

Key words: fuel cells, cold start, coolant, numerical analysis, CFD

中图分类号: 

  • TK 91

图1

PEMFC结构及网格"

表1

物性参数"

参数数值
扩散层孔隙率0.513
H2/O2/水蒸气扩散系数/(m2/s)8.67×10-5/ 1.53×10-5/ 1.79×10-5
双极板电导率/(S/m)1.4×106
扩散层/催化层电导率/(S/m)300
双极板/扩散层/催化层/质子交换膜/冷却剂热导率/(W/(m·K))16/ 1.7/ 0.27/ 0.16/ 0.25
双极板/扩散层/催化层/质子交换膜/冷却剂热质量/(kJ/(m3·K))4000/ 230/ 580/ 2300/ 3400

图2

网格无关性验证"

图3

冷却剂入口温度拟合"

图4

数值结果与实验数据对比"

表2

结构和工况参数"

参数数值
气体流道宽度/mm0.4
双极板厚度/mm0.1
扩散层厚度/mm0.2
催化层厚度/mm0.015
质子交换膜厚度/mm0.018
阳极/阴极化学计量比2/3
电池启动温度/°C-20
H2/O2流道入口温度/°C-14/-18
H2/O2流道入口压力/Pa1.84×105 /1.74×105

图5

z=0 m截面反应物浓度分布云图"

图6

MEM中面电流密度分布云图"

图7

温度分布曲线"

图8

z=0 m截面MEA含水量分布曲线"

图9

z=1 mm截面冰含量分布曲线"

1 张剑波, 黄福森, 黄俊, 等. 质子交换膜燃料电池零下冷启动研究进展[J]. 化学通报, 2017, 80(6): 507-516.
ZhangJ B, HuangF S, HuangJ, et al. A review on subzero startup of proton exchange membrane fuel cell[J]. Chemistry, 2017, 80(6): 507-516.
2 MengH. Numerical analyses of non-isothermal self-start behaviors of PEM fuel cells from subfreezing startup temperatures[J]. International Journal of Hydrogen Energy, 2008, 33(20): 5738-5747.
3 KoJ, JuH. Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells[J]. Applied Energy, 2012, 94: 364-374.
4 LuoY, JiaoK, JiaB. Elucidating the constant power, current and voltage cold start modes of proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2014, 77: 489-500.
5 TabeY, SaitoM, FukuiK, et al. Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2012, 208: 366-373.
6 GeS, WangC Y. Characteristics of subzero startup and water/ice formation on the catalyst layer in a polymer electrolyte fuel cell[J]. Electrochimica Acta, 2007, 52(14): 4825-4835.
7 BégotS, HarelF, KauffmannJ M. Experimental studies on the influence of operational parameters on the cold start of a 2 kW fuel cell[J]. Fuel Cells, 2008, 8(2): 138-150.
8 SchießwohlE, von UnwerthT, SeyfriedF, et al. Experimental investigation of parameters influencing the freeze start ability of a fuel cell system[J]. Journal of Power Sources, 2009, 193(1): 107-115.
9 罗马吉, 王芳芳, 刘威, 等. 质子交换膜燃料电池冷启动及性能衰减研究[J]. 华中科技大学学报(自然科学版), 2011, 39(6): 116-120.
LuoM J, WangF F, LiuW, et al. Research on PEMFC start-up at subzero temperature and performance decay[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2011, 39(6): 116-120.
10 KoJ, KimW, HongT, et al. Impact of metallic bipolar plates on cold-start behaviors of polymer electrolyte fuel cells (PEFCs)[J]. Solid State Ionics, 2012, 225: 260-267.
11 KhandelwalM, LeeS, MenchM M. One-dimensional thermal model of cold-start in a polymer electrolyte fuel cell stack[J]. Journal of Power Sources, 2007, 172(2): 816-830.
12 李友才, 许思传, 杨宗田. 不同参数对PEMFC电堆低温起动影响的仿真研究[J]. 电源技术, 2014, 38(9): 1657-1659.
LiY C, XuS C, YangZ T. Simulation study on cold start of proton exchange membrane fuel cell stack[J]. Chinese Journal of Power Sources, 2014, 38(9): 1657-1659.
13 KonnoN, MizunoS, NakajiH, et al. Development of compact and high-performance fuel cell stack[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 123-129.
14 JiangF, WangC Y. Potentiostatic start-up of PEMFCs from subzero temperatures[J]. Journal of the Electrochemical Society, 2008, 155(7): B743.
15 JiangF, WangC Y, ChenK S. Current ramping: a strategy for rapid start-up of PEMFCs from subfreezing environment[J]. Journal of the Electrochemical Society, 2010, 157(3): B342.
16 DuQ, JiaB, LuoY, et al. Maximum power cold start mode of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8390-8400.
17 张洁, 许思传, 郑浩, 等. 基于AMESim的燃料电池系统低温起动仿真[J]. 电源技术, 2015, 39(2): 298-301.
ZhangJ, XuS C, ZhengH, et al. Simulation of cold start of fuel cell system based on AMESim[J]. Chinese Journal of Power Sources, 2015, 39(2): 298-301.
18 GwakG, JuH. A rapid start-up strategy for polymer electrolyte fuel cells at subzero temperatures based on control of the operating current density[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11989-11997.
19 JiangF, FangW, WangC Y. Non-isothermal cold start of polymer electrolyte fuel cells[J]. Electrochimica Acta, 2007, 53(2): 610-621.
20 汪飞杰. 燃料电池发动机-20℃冷启动研究[J]. 上海汽车, 2017, (8): 3-6.
WangF J. -20℃ cold start research for fuel cell engine[J]. Shanghai Auto, 2017, (8): 3-6.
[1] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[2] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[3] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[4] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[5] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[6] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[7] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[8] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[9] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[10] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[11] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
[12] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[13] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[14] 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466.
[15] 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[2] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(II)不连续过程[J]. CIESC Journal, 2007, 15(3): 369 -375 .
[3] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[4] 杨卫国, 王金福, 金涌. 高温高压浆态鼓泡床反应器中的气-液传质[J]. CIESC Journal, 2001, 9(3): 253 -257 .
[5] 高华生, 汪大翚, 叶芸春, 谭天恩. 苯-水混合蒸气在活性炭上的二元吸附平衡[J]. CIESC Journal, 2002, 10(3): 367 -370 .
[6] MuhammadArifMalik, SalmanAkbarMalik. Pulsed Corona Discharges and Their Applications in Toxic VOCs Abatement[J]. CIESC Journal, 1999, 7(4): 351 -362 .
[7] 高习群, 马友光, 朱春英, 余国琮. 单泡吸收过程的界面传质机理[J]. CIESC Journal, 2006, 14(2): 158 -163 .
[8] 王淑梅, 于养信, 高光华. 气体透过碳膜的非平衡动力学模拟研究
[J]. CIESC Journal, 2006, 14(2): 164 -170 .
[9] 马永锡, 张红. 基于中心复合设计的振荡热管传热性能分析
[J]. CIESC Journal, 2006, 14(2): 223 -228 .
[10] 周笑鹏, 史清洪, 邢新会, 孙彦. 快速纯化在大肠杆菌中表达的增强型绿色荧光蛋白
[J]. CIESC Journal, 2006, 14(2): 229 -234 .