化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1684-1691.doi: 10.11949/0438-1157.20200744

• 能源和环境工程 • 上一篇    下一篇

ZnO/PbS异质结量子点太阳能电池的界面修饰及稳定性研究

邢美波(),魏玉瑶,王瑞祥   

  1. 北京建筑大学环境与能源工程学院,北京市建筑能源高效综合利用工程技术研究中心,北京 100044
  • 收稿日期:2020-06-12 修回日期:2020-07-15 出版日期:2021-03-05 发布日期:2021-03-05
  • 通讯作者: 邢美波 E-mail:xingmeibo@bucea.edu.cn
  • 作者简介:邢美波(1987—),女,博士,副教授,xingmeibo@bucea.edu.cn
  • 基金资助:
    国家自然科学基金项目(51906013);北京建筑大学未来城市设计高精尖创新中心资助项目(UDC2018031121)

Interface modification and stability of ZnO/PbS heterojunction quantum dot solar cells

XING Meibo(),WEI Yuyao,WANG Ruixiang   

  1. Beijing Engineering Research Centre of Sustainable Energy and Buildings, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2020-06-12 Revised:2020-07-15 Published:2021-03-05 Online:2021-03-05
  • Contact: XING Meibo E-mail:xingmeibo@bucea.edu.cn

摘要:

对ZnO/PbS异质结量子点太阳能电池的界面修饰及稳定性进行研究,采用ZnO电子传输层掺杂金属Mg及引入电子阻挡层两种界面修饰方法,制备了不同的量子点太阳能电池器件,并对其进行伏安特性测试。结果表明,界面修饰可调整界面能级结构、减少缺陷复合、增强电荷传输。经过界面修饰的器件获得了9.46%的光电转换效率(PCE),分别比未掺杂的器件(PCE为5.41%)和无电子阻挡层结构的器件(PCE为1.60%)提升了约75%和491%。此外,经过30 d的空气暴露后,界面修饰后的器件仍能保持原有PCE的95%以上。

关键词: 量子点太阳能电池, 硫化铅, 界面, 优化, 稳定性

Abstract:

In this work, the interface modification and stability of ZnO /PbS heterojunction quantum dot solar cells were studied. Two interface modification methods, doping Mg in ZnO electron transport layer and introducing electron blocking layer into the device, were investigated. The results show that interface modification could adjust the interface energy level structure, reduce defect recombination, and enhance the charge transmission, thus improve the power conversion efficiency (PCE) of solar cells. The PCE of the device treated by interface modification is 9.46%, which improves approximately 75% and 491% comparing with the undoped one (PCE=5.41%) and the device without electron blocking layer (PCE=1.60%), respectively. Interface modification is demonstrated to be an effective strategy for optimizing the photovoltaic performance of ZnO/PbS heterojunction solar cells and maintaining great air storage stability. In addition, after 30 days of air exposure, the interface modified device can still maintain more than 95% of the original PCE.

Key words: quantum dot solar cells, lead sulfide, interface, optimization, stability

中图分类号: 

  • TM
1 Ding C, Zhang Y, Liu F, et al. Recombination suppression in PbS quantum dot heterojunction solar cells by energy-level alignment in the quantum dot active layers[J]. ACS Applied Materials & Interfaces, 2017, 10(31): 26142-26152.
2 Lv Y R, Huo R, Yang S Y, et al. Self-assembled synthesis of PbS quantum dots supported on polydopamine encapsulated BiVO4 for enhanced visible-light-driven photocatalysis[J]. Separation and Purification Technology, 2018, 197: 281-288.
3 Lu K, Wang Y, Liu Z, et al. High-effciency PbS quantum-dot solar cells with greatly simplifed fabrication processing via "solvent-curing"[J]. Advanced Materials, 2018, 30(25): e1707572.
4 Jin Z, Wang A, Zhou Q, et al. Detecting trap states in planar PbS colloidal quantum dot solar cells[J]. Scientific Reports, 2016, 7(1): 39725.
5 Shi X F, Xia X Y, Cui G W, et al. Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 163: 123-128.
6 Aqoma H, Mubarok M A, Hadmojo W T, et al. High-efficiency photovoltaic devices using trap-controlled quantum-dot ink prepared via phase-transfer exchange[J]. Advanced Matererials, 2017, 29(19): 1605756.
7 Stavrinadis A, Pradhan S, Papagiorgis P, et al. Suppressing deep traps in PbS colloidal quantum dots via facile iodide substitutional doping for solar cells with efficiency >10%[J]. ACS Energy Letters, 2017, 2(4): 739-744.
8 Liu M, Voznyy O, Sabatini R, et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids[J]. Nature Materials, 2017, 16(2): 258-263.
9 Xu J, Voznyu O, Liu M, et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids[J]. Nature Nanotechnology, 2018, 13(6): 456-462.
10 Park D, Azmi R, Cho Y, et al. Improved passivation of PbS quantum dots for solar cells using triethylamine hydroiodide[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10784-10791.
11 Yao X, Song Z, Mi L, et al. Improved stability of depletion heterojunction solar cells employing cationexchange PbS quantum dots[J]. Solar Energy Materials and Solar Cells, 2018, 187: 199-206.
12 Maity S, Sahu P P. Efficient Si-ZnO-ZnMgO heterojunction solar cell with alignment of grown hexagonal nanopillar[J]. Thin Solid Films, 2019, 674: 107-111.
13 Eisner F, Seitkhan A, Han Y, et al. Solution-processed In2O3/ZnO heterojunction electron transport layers for efficient organic bulk heterojunction and inorganic colloidal quantum-dot solar cells[J]. Solar RRL, 2018, 2(7): 1800076.
14 刘春波, 张实, 王龙, 等. 缓冲层在有机太阳能电池中的应用[J]. 化工进展, 2012, 31(2): 310-315.
Liu C B, Zhang S, Wang L, et al. Applications of buffer layers in organic solar cells[J]. Chemical Industry and Engineering Progree, 2012, 31(2 ): 310-315.
15 陈超, 杨修春, 刘巍. 有机-无机杂化钙钛矿太阳能电池的研究进展[J]. 化工学报, 2017, 68(3): 811-820.
Chen C, Yang X C, Liu W. Research progress of hybrid organic-inorganic perovskite solar cells[J]. CIESC Journal, 2017, 68(3): 811-820.
16 Dagher S, Haik Y, Tit N, et al. PbS/CdS heterojunction quantum dot solar cells[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(4): 3328-3340.
17 Yang F, Xu Y, Gu M, et al. Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells[J]. Journal of Materials Chemistry A, 2018, 6(36): 17688-17697.
18 Hu L, Zhang Z, Patterson R J, et al. Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping[J]. Nano Energy, 2018, 46: 212-219.
19 Cademartiri L, Montanari E, Calestani G, et al. Size-dependent extinction coefficients of PbS quantum dots[J]. Journal of the American Chemical Society, 2006, 128(31): 10337-10346.
20 Ding C, Zhang Y, Liu F, et al. Understanding charge transfer and recombination by interface engineering for improving the efficiency of PbS quantum dot heterojunction solar cells[J]. Nanoscale Horiz, 2018, 3(4): 417-429.
21 Wang L, Jia Y, Wang Y, et al. Defect passivation of low-temperature processed ZnO electron transport layer with polyethylenimine for PbS quantum dot photovoltaics[J]. ACS Applied Energy Materials, 2019, 2(3): 1695-1701.
22 Yin Z, Zheng Q, Chen S C, et al. Bandgap tunable Zn1-xMgxO thin films as highly transparent cathode buffer layers for high-performance inverted polymer solar cells[J]. Advanced Energy Materials, 2014, 4(7): 1301404.
23 Yin Z, Zheng Q, Chen S C, et al. Controllable ZnMgO electron-transporting layers for long-term stable organic solar cells with 8.06% efficiency after one-year storage[J]. Advanced Energy Materials, 2016, 6(4): 1501493.
24 Azmi R, Seo G, Ahn T K, et al. High-efficiency air-stable colloidal quantum dot solar cells based on a potassium-doped ZnO electron-accepting layer[J]. ACS Appl. Mater. Interfaces, 2018, 10(41): 35244-35249.
25 Neupane G R, Kaphle A, Hari P. Microwave-assisted Fe-doped ZnO nanoparticles for enhancement of silicon solar cell efficiency[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110073.
26 Choi J, Kim Y, Jo J W, et al. Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics[J]. Adv. Mater., 2017, 29(33): 1702350.
27 Gao Y, Patterson R, Hu L, et al. MgCl2 passivated ZnO electron transporting layer to improve PbS quantum dot solar cells[J]. Nanotechnology, 2019, 30(8): 085403.
28 Ehrler B, Musseiman K P, Bohm M L, et al. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide[J]. ACS Nano, 2013, 7(5): 4210-4220.
29 Kirmani A R, García de Arquer F P, Fan J Z, et al. Molecular doping of the hole-transporting layer for efficient, single-step-deposited colloidal quantum dot photovoltaics[J]. ACS Energy Letters, 2017, 2(9): 1952-1959.
30 Liu M, de Arquer F P G, Li Y, et al. Double-sided junctions enable high-performance colloidal-quantum-dot photovoltaics[J]. Advanced Materials, 2016, 28(21): 4142-4148.
31 Zhang X, Jia D, Hägglund C, et al. Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange[J]. Nano Energy, 2018, 53: 373-382.
32 Rekemeyer P H, Chang S, Chuang C H M, et al. Enhanced photocurrent in PbS quantum dot photovoltaics via ZnO nanowires and band alignment engineering[J]. Advanced Energy Materials, 2016, 6(24): 1600848.
33 Cao Y, Stavrinadis A, Lasanta T, et al. The role of surface passivation for efficient and photostable PbS quantum dot solar cells[J]. Nature Energy, 2016, 1(4): 16035.
34 Willis S M, Cheng C, Assender H E, et al. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells[J]. Nano Letters, 2012, 12(3): 1522-1526.
35 Zhai G, Bezryadina A, Breeze A J, et al. Air stability of TiO2/PbS colloidal nanoparticle solar cells and its impact on power efficiency[J]. Applied Physics Letters, 2011, 99(6): 063512.
[1] 郝刚卫, 刘晔, 晏刚, 鱼剑琳. 串并联风冷冰箱性能优化[J]. 化工学报, 2021, 72(S1): 178-183.
[2] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[3] 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256.
[4] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[5] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[6] 朱晓兵, 李佳佳, 李怡宁, 杨洪月, 李小松, 刘景林. 氧化锰电催化析氧反应及其电极界面特性[J]. 化工学报, 2021, 72(S1): 398-405.
[7] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[8] 安美燕, 王洁冰, 徐震原, 王如竹. 基于LiCl溶液太阳能界面蒸发的连续式空气取水[J]. 化工学报, 2021, 72(S1): 70-76.
[9] 李闯, 张扬, 刘小娟, 王学重. 添加剂作用下阿司匹林结晶模拟和实验研究[J]. 化工学报, 2021, 72(9): 4796-4807.
[10] 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522.
[11] 李南星, 张麟. 靶向于Galectin-10蛋白的哮喘抑制剂设计[J]. 化工学报, 2021, 72(9): 4847-4853.
[12] 孟璐璐, 谢添玺, 陈志豪, 宇高義郎. 材料交错分布型传热板表面异态干涉沸腾传热特性研究[J]. 化工学报, 2021, 72(9): 4564-4572.
[13] 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
[14] 胡小龙, 公文学, 彭艺, 胡阳, 汤颖, 何辉, 李文愿, 赵钟兴, 赵祯霞. 配体诱导制备NM88(D)/COF-OMe复合材料及可见光芬顿联合降解抗生素磺胺甲嘧啶研究[J]. 化工学报, 2021, 72(9): 4730-4739.
[15] 方远鑫, 肖武, 姜晓滨, 李祥村, 贺高红, 吴雪梅. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[2] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(II)不连续过程[J]. CIESC Journal, 2007, 15(3): 369 -375 .
[3] 郑裕国, 陈小龙, 汪钊, 沈寅初. 低高径比外循环气升式生物反应器带渣发酵生产有效霉素[J]. CIESC Journal, 2004, 12(1): 102 -107 .
[4] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[5] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .
[6] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[7] 孙国刚, 时铭显. 喷嘴进料对催化裂化提升管流动行为的影响[J]. CIESC Journal, 2003, 11(6): 638 -642 .
[8] 潘海华, 李啸风, 李浩然, 刘迪霞, 韩世钧. 双亲分子在油水界面的行为研究[J]. CIESC Journal, 2003, 11(4): 446 -451 .
[9] 刘磊, 孙贺东, 胡志华, 周芳德. 水平管气液两相弹状流液弹频率的水动力学新模型[J]. CIESC Journal, 2003, 11(5): 508 -514 .
[10] 张治山, 赵文, 王艳丽, 周传光, 袁希钢. 基于瞬时目标函数曲线特性的反应器网络综合[J]. CIESC Journal, 2003, 11(4): 436 -440 .