化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2896-2904.doi: 10.11949/0438-1157.20201574

• 过程安全 • 上一篇    

储罐壁面限制条件下喷射火火焰行为

吴月琼(),周魁斌(),黄梦源,周梦雅   

  1. 南京工业大学安全科学与工程学院,江苏 南京 211816
  • 收稿日期:2020-11-03 修回日期:2020-12-13 出版日期:2021-05-05 发布日期:2021-05-05
  • 通讯作者: 周魁斌 E-mail:2983317140@qq.com;kbzhou@njtech.edu.cn
  • 作者简介:吴月琼(1994—),女,硕士研究生, 2983317140@qq.com
  • 基金资助:
    国家自然科学基金项目(51876088);江苏省第十六批“六大人才高峰”高层次人才项目(XNYQC-005);江苏省研究生实践创新计划项目(SJCX20_0387)

Flame behavior of jet fire confined by the tank wall

WU Yueqiong(),ZHOU Kuibin(),HUANG Mengyuan,ZHOU Mengya   

  1. College of Safety Science Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2020-11-03 Revised:2020-12-13 Published:2021-05-05 Online:2021-05-05
  • Contact: ZHOU Kuibin E-mail:2983317140@qq.com;kbzhou@njtech.edu.cn

摘要:

高压燃气储罐泄漏极易诱发喷射火。通过搭建储罐壁面限制条件下不同喷射角度的喷射火实验装置,对近喷口流场受限的喷射火进行了系统研究,并验证了装置测试的可重复性。实验结果表明,储罐壁面限制条件下推举高度小于自由射流的推举高度,并通过数值模拟分析了两种空间条件下空气卷吸流场的差异性,从而物理解释了储罐壁面限制条件对推举高度的影响。两种空间条件下火焰长度都随喷射角度的增加而减小,但自由垂直射流的火焰长度小于储罐壁面限制条件下的火焰长度。火焰行为由浮力控制转为动量控制的临界Froude数与喷射角度和空间限制条件无关。研究还发现,与自由射流相比,储罐壁面的阻塞效应会降低火焰的推举速度,提高火焰的吹熄速度。

关键词: 喷射角度, 喷射火, 推举高度, 火焰长度, 储罐壁面, 安全, 不稳定性, 流体力学

Abstract:

Leakage of high-pressure gas storage tanks is very easy to induce jet fire. By building a jet fire experiment device with different jet angles under the restriction of the tank wall, the jet fire with restricted flow field near the nozzle was systematically studied, and the test repeatability of the device was verified. Experimental results show that the lift-off height of confined jet fire is less than that of the free jet. Numerical simulation confirms the effect of tank wall on the air entrainment that dominates the lift-off. The flame length of vertical free jet is less than that of vertical confined jet, but the flame length decreases with the increase of the inclined angle for both free and confined jet fires. The critical Froude number to distinguish the buoyancy and momentum-dominated jet fire, is constant despite the jet angle and the restriction condition of space. The study also found that the blocking effect of tank wall will reduce the liftoff velocity and increase the blowout velocity of the jet flame, as compared to the free jet.

Key words: jet angle, jet flame, lift-off height, flame length, tank wall, safety, instability, fluid mechanics

中图分类号: 

  • X 931

图1

实验装置示意图"

表1

实验工况"

倾斜角度θ /(°)流速Ue/(m/s)Fr=Ue2/(gd)
08.96~75.452.7×103~1.9×105
308.49~75.452.5×103~1.9×105
458.72~75.452.6×103~1.9×105
608.25~75.452.3×103~1.9×105

图2

火焰长度示意图(Ue=56.69 m/s)"

图4

二维几何模型示意图"

图3

实验的可重复性判定(θ=0°,Ue=56.69 m/s)"

图5

喷口附近速度矢量图(θ=45°,Ue=18.86 m/s)"

图6

不同喷射角度的推举高度随出口流速的变化"

图7

空气卷吸速率随轴向高度的变化(Ue=18.86 m/s)"

图8

不同喷射角度下无量纲推举高度随无量纲出口流速的变化"

图9

储罐壁面限制条件下不同喷射角度的火焰长度随出口流速的变化"

图10

自由和受限射流喷射火焰长度的比较"

图11

不同喷射角度下无量纲火焰长度随喷口Froude数的变化"

图13

受限与自由射流推举速度比值随喷射角度的变化"

图12

附着火焰、推举火焰和接近吹熄的火焰图像(θ=0°)"

图14

吹熄速度随喷射角度的变化"

图15

丙烷喷射火焰的吹熄和淬灭的临界判据(垂直虚线表示临界压力比条件)"

1 Zhou K B, Liu J Y, Jiang J C. Prediction of radiant heat flux from horizontal propane jet fire[J]. Applied Thermal Engineering, 2016, 106: 634-639.
2 Vanquickenborne L, van Tiggelen A. The stabilization mechanism of lifted diffusion flames[J]. Combustion and Flame, 1966, 10(1): 59-69.
3 Kalghatgi G T. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air[J]. Combustion Science and Technology, 1984, 41(1/2): 17-29.
4 Becker H A, Liang D. Visible length of vertical free turbulent diffusion flames[J]. Combustion and Flame, 1978, 32: 115-137.
5 Huang Y B, Li Y F, Dong B Y, et al. Predicting the main geometrical features of horizontal rectangular source fuel jet fires[J]. Journal of the Energy Institute, 2018, 91(6): 1153-1163.
6 Kalghatgi G T. The visible shape and size of a turbulent hydrocarbon jet diffusion flame in a cross-wind[J]. Combustion and Flame, 1983, 52: 91-106.
7 Wang K, Tao C F, Liu Q, et al. An experimental investigation of flame height and air entrainment rate of double jet fires[J]. Experimental Heat Transfer, 2018, 31(1): 22-31.
8 Liu C C, Liu X L, Ge H, et al. On the influence of distance between two jets on flickering diffusion flames[J]. Combustion and Flame, 2019, 201: 23-30.
9 Zhou K B, Qin X L, Zhang L, et al. An experimental study of jet fires in rotating flow fields[J]. Combustion and Flame, 2019, 210: 193-203.
10 Smith T, Periasamy C, Baird B, et al. Trajectory and characteristics of buoyancy and momentum dominated horizontal jet flames from circular and elliptic burners[J]. Journal of Energy Resources Technology, 2006, 128(4): 300-310.
11 Laboureur D M, Gopalaswami N, Zhang B, et al. Experimental study on propane jet fire hazards: assessment of the main geometrical features of horizontal jet flames[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 355-364.
12 Zhou K B, Wang Y Z, Zhang L, et al. Effect of nozzle exit shape on the geometrical features of horizontal turbulent jet flame[J]. Fuel, 2020, 260: 116356.
13 Tao C F, Shen Y, Zong R W. Experimental determination of flame length of buoyancy-controlled turbulent jet diffusion flames from inclined nozzles[J]. Applied Thermal Engineering, 2016, 93: 884-887.
14 沈燕. 倾斜条件下矩形开口气体射流火火焰特性研究[D]. 合肥: 中国科学技术大学, 2016.
Shen Y. Flame characteristics of buoyancy-controlled turbulent jet fires from inclined rectangular nozzles[D]. Hefei: University of Science and Technology of China, 2016.
15 沈燕, 陶常法, 宗若雯, 等. 矩形喷口射流火火焰轴向温度研究[J]. 火灾科学, 2017, 26(2): 87-92.
Shen Y, Tao C F, Zong R W, et al. Axial temperature distribution of vertical jet flames from rectangular nozzles[J]. Fire Safety Science, 2017, 26(2): 87-92.
16 Wang Q, Yan J, Shi L M, et al. An experimental investigation on oscillating length scale of gas pipeline leakage flame restricted by parallel sidewalls[J]. Combustion and Flame, 2020, 215: 252-258.
17 Hutchins A R, Kribs J D, Muncey R D, et al. Assessment of stabilization mechanisms of confined, turbulent, lifted jet flames: effects of ambient coflow[C]//Proceedings of the ASME 2013 Power Conference. Boston, Massachusetts, USA, 2013.
18 Yan Y, Ye T H, Jiang N P. Experimental investigation on burner lip thickness effect on the liftoff and blowout velocities of jet diffusion flame[J]. Journal of Engineering Thermophysics, 2017, 26(3): 416-426.
19 Cha M S, Chung S H. Characteristics of lifted flames in nonpremixed turbulent confined jets[J]. Symposium (International) on Combustion, 1996, 26(1): 121-128.
20 Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
21 Suris A L, Flankin E V,Shorin S N. Length of free diffusion flames[J]. Combustion Explosion & Shock Waves, 1977, 13(4): 459-462.
22 Mccaffrey B J. Flame height[M]// SFPE Fire Protection Handbook. Berlin: Springer, 1988.
23 Quintiere J G, Grove B S. A unified analysis for fire plumes[J]. Symposium (International) on Combustion,1998, 27(2): 2757-2766.
24 Bradley D, Gaskell P H, Gu X J, et al. Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates[J]. Combustion and Flame, 2016, 164: 400-409.
25 周魁斌, 刘娇艳, 蒋军成. 高压可燃气体泄漏动力学过程与喷射火热灾害分析[J]. 化工学报, 2018, 69(4): 1276-1287.
Zhou K B, Liu J Y, Jiang J C. Analyses on dynamical process of high pressure combustible gas leakage and thermal hazard of jet fire[J]. CIESC Journal, 2018, 69(4): 1276-1287.
26 Santos A, Costa M. Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames[J]. Combustion and Flame, 2005, 142(1/2): 160-169.
27 Peters N. Turbulent Combustion[M]. Cambridge: Cambridge University Press, 2000: 239.
28 Kalghatgi G T. Blow-out stability of gaseous jet diffusion flames[J]. Combustion Science and Technology, 1981, (5/6): 233-239.
29 Turns S R. An Introduction to Combustion: Concepts and Applications[M]. WCB/McGraw-Hill, 2000: 507.
30 Palacios A, Bradley D. Generalised correlations of blow-off and flame quenching for sub-sonic and choked jet flames[J]. Combustion and Flame, 2017, 185: 309-318.
[1] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[2] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[3] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[4] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[5] 郭中权, 邹湘, 毛维东, 孙邃, 马赛, 吕顺之, 刘雪菲, 王远. 矿井水脱盐过程中卷式反渗透膜性能的数值模拟研究[J]. 化工学报, 2021, 72(9): 4808-4815.
[6] 张文龙, 侯燕, 靳海波, 马磊, 何广湘, 杨索和, 郭晓燕, 张荣月. 加温加压下CFD-PBM耦合模型空气-水两相流数值模拟研究[J]. 化工学报, 2021, 72(9): 4594-4606.
[7] 李云浩, 蒋军成, 喻源, 王志荣, 张庆武. 穿孔与热辐射耦合作用下固定拱顶钢储罐的失效机理[J]. 化工学报, 2021, 72(8): 4433-4443.
[8] 李琪, 张容铭, 胡鹏飞. LTNE条件下界面对流传热系数对部分填充多孔介质通道传热特性的影响[J]. 化工学报, 2021, 72(8): 4121-4133.
[9] 刘荫, 王海清, 许小林, 刘美晨. 考虑火炬负荷风险的关联联锁回路SIL定级方法[J]. 化工学报, 2021, 72(5): 2754-2762.
[10] 聂璇, 周魁斌, 吴月琼, 黄梦源, 蒋军成. 气固射流扩散火焰形态研究[J]. 化工学报, 2021, 72(5): 2878-2886.
[11] 赵峻逸, 薛士东, 韩敬坤, 温荣福, 兰忠, 郝婷婷, 马学虎. 双液滴碰撞行为及调控机制的研究进展[J]. 化工学报, 2021, 72(5): 2354-2372.
[12] 朱明军, 胡大鹏. 三相卧螺离心机设计分析及结构参数对分离效果的影响[J]. 化工学报, 2021, 72(4): 2113-2122.
[13] 屈持, 王海清, 姜巍巍, 孙浩, 张景康. 不完全维修策略下的安全关键设备可靠性评估[J]. 化工学报, 2021, 72(4): 2328-2336.
[14] 石珊珊, 魏爱博, 张小斌. 液氮超声空化CFD模拟及实验研究[J]. 化工学报, 2021, 72(4): 1930-1938.
[15] 蓝敏乐, 谭博仁, 许东兵, 王勇, 齐涛. 管型混合澄清槽内的液-液两相流的数值模拟[J]. 化工学报, 2021, 72(4): 1965-1974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[2] 孙海翔, 张林, 柴红, 陈欢林. 壳聚糖亲和膜脱除蛋白质溶液中的内毒素[J]. CIESC Journal, 2005, 13(4): 457 -463 .
[3] 吴燕翔, 王碧玉. 恒压过滤介质阻力分析[J]. CIESC Journal, 2004, 12(1): 33 -36 .
[4] 郑裕国, 陈小龙, 汪钊, 沈寅初. 低高径比外循环气升式生物反应器带渣发酵生产有效霉素[J]. CIESC Journal, 2004, 12(1): 102 -107 .
[5] 唐致远, 冯季军, 彭亚宁. 采用不同锰源合成尖晶石LiMn2O4正极材料[J]. CIESC Journal, 2004, 12(1): 124 -127 .
[6] 秦炜, 李振宇, 汪敏, 戴猷元. 三烷基胺萃取氨基磺酸及其废水的特性研究[J]. CIESC Journal, 2004, 12(1): 137 -142 .
[7] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[8] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[9] 沈师孔, 李然家, 周吉萍, 余长春. 晶格氧用于轻烃的选择氧化[J]. CIESC Journal, 2003, 11(6): 649 -655 .
[10] 尚智, 杨瑞昌, FUKUDA Kenji, 钟勇, 巨泽建. 用扩散流动模型分析悬浮床内的气固两相向上流动[J]. CIESC Journal, 2003, 11(5): 497 -503 .