化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2896-2904.DOI: 10.11949/0438-1157.20201574
• 过程安全 • 上一篇
收稿日期:
2020-11-03
修回日期:
2020-12-13
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
周魁斌
作者简介:
吴月琼(1994—),女,硕士研究生, 基金资助:
WU Yueqiong(),ZHOU Kuibin(),HUANG Mengyuan,ZHOU Mengya
Received:
2020-11-03
Revised:
2020-12-13
Online:
2021-05-05
Published:
2021-05-05
Contact:
ZHOU Kuibin
摘要:
高压燃气储罐泄漏极易诱发喷射火。通过搭建储罐壁面限制条件下不同喷射角度的喷射火实验装置,对近喷口流场受限的喷射火进行了系统研究,并验证了装置测试的可重复性。实验结果表明,储罐壁面限制条件下推举高度小于自由射流的推举高度,并通过数值模拟分析了两种空间条件下空气卷吸流场的差异性,从而物理解释了储罐壁面限制条件对推举高度的影响。两种空间条件下火焰长度都随喷射角度的增加而减小,但自由垂直射流的火焰长度小于储罐壁面限制条件下的火焰长度。火焰行为由浮力控制转为动量控制的临界Froude数与喷射角度和空间限制条件无关。研究还发现,与自由射流相比,储罐壁面的阻塞效应会降低火焰的推举速度,提高火焰的吹熄速度。
中图分类号:
吴月琼, 周魁斌, 黄梦源, 周梦雅. 储罐壁面限制条件下喷射火火焰行为[J]. 化工学报, 2021, 72(5): 2896-2904.
WU Yueqiong, ZHOU Kuibin, HUANG Mengyuan, ZHOU Mengya. Flame behavior of jet fire confined by the tank wall[J]. CIESC Journal, 2021, 72(5): 2896-2904.
倾斜角度θ /(°) | 流速Ue/(m/s) | Fr= |
---|---|---|
0 | 8.96~75.45 | 2.7×103~1.9×105 |
30 | 8.49~75.45 | 2.5×103~1.9×105 |
45 | 8.72~75.45 | 2.6×103~1.9×105 |
60 | 8.25~75.45 | 2.3×103~1.9×105 |
表1 实验工况
Table 1 Experimental conditions
倾斜角度θ /(°) | 流速Ue/(m/s) | Fr= |
---|---|---|
0 | 8.96~75.45 | 2.7×103~1.9×105 |
30 | 8.49~75.45 | 2.5×103~1.9×105 |
45 | 8.72~75.45 | 2.6×103~1.9×105 |
60 | 8.25~75.45 | 2.3×103~1.9×105 |
图3 实验的可重复性判定(θ=0°,Ue=56.69 m/s)
Fig.3 Test repeatability justified by the comparison of two repeatable tests under the jet angle of 0° and the exit velocity of 56.69 m/s
图15 丙烷喷射火焰的吹熄和淬灭的临界判据(垂直虚线表示临界压力比条件)
Fig.15 Blowout and quench boundary of propane jet flame(vertical dashed line indicates the critical pressure ratio condition)
1 | Zhou K B, Liu J Y, Jiang J C. Prediction of radiant heat flux from horizontal propane jet fire[J]. Applied Thermal Engineering, 2016, 106: 634-639. |
2 | Vanquickenborne L, van Tiggelen A. The stabilization mechanism of lifted diffusion flames[J]. Combustion and Flame, 1966, 10(1): 59-69. |
3 | Kalghatgi G T. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air[J]. Combustion Science and Technology, 1984, 41(1/2): 17-29. |
4 | Becker H A, Liang D. Visible length of vertical free turbulent diffusion flames[J]. Combustion and Flame, 1978, 32: 115-137. |
5 | Huang Y B, Li Y F, Dong B Y, et al. Predicting the main geometrical features of horizontal rectangular source fuel jet fires[J]. Journal of the Energy Institute, 2018, 91(6): 1153-1163. |
6 | Kalghatgi G T. The visible shape and size of a turbulent hydrocarbon jet diffusion flame in a cross-wind[J]. Combustion and Flame, 1983, 52: 91-106. |
7 | Wang K, Tao C F, Liu Q, et al. An experimental investigation of flame height and air entrainment rate of double jet fires[J]. Experimental Heat Transfer, 2018, 31(1): 22-31. |
8 | Liu C C, Liu X L, Ge H, et al. On the influence of distance between two jets on flickering diffusion flames[J]. Combustion and Flame, 2019, 201: 23-30. |
9 | Zhou K B, Qin X L, Zhang L, et al. An experimental study of jet fires in rotating flow fields[J]. Combustion and Flame, 2019, 210: 193-203. |
10 | Smith T, Periasamy C, Baird B, et al. Trajectory and characteristics of buoyancy and momentum dominated horizontal jet flames from circular and elliptic burners[J]. Journal of Energy Resources Technology, 2006, 128(4): 300-310. |
11 | Laboureur D M, Gopalaswami N, Zhang B, et al. Experimental study on propane jet fire hazards: assessment of the main geometrical features of horizontal jet flames[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 355-364. |
12 | Zhou K B, Wang Y Z, Zhang L, et al. Effect of nozzle exit shape on the geometrical features of horizontal turbulent jet flame[J]. Fuel, 2020, 260: 116356. |
13 | Tao C F, Shen Y, Zong R W. Experimental determination of flame length of buoyancy-controlled turbulent jet diffusion flames from inclined nozzles[J]. Applied Thermal Engineering, 2016, 93: 884-887. |
14 | 沈燕. 倾斜条件下矩形开口气体射流火火焰特性研究[D]. 合肥: 中国科学技术大学, 2016. |
Shen Y. Flame characteristics of buoyancy-controlled turbulent jet fires from inclined rectangular nozzles[D]. Hefei: University of Science and Technology of China, 2016. | |
15 | 沈燕, 陶常法, 宗若雯, 等. 矩形喷口射流火火焰轴向温度研究[J]. 火灾科学, 2017, 26(2): 87-92. |
Shen Y, Tao C F, Zong R W, et al. Axial temperature distribution of vertical jet flames from rectangular nozzles[J]. Fire Safety Science, 2017, 26(2): 87-92. | |
16 | Wang Q, Yan J, Shi L M, et al. An experimental investigation on oscillating length scale of gas pipeline leakage flame restricted by parallel sidewalls[J]. Combustion and Flame, 2020, 215: 252-258. |
17 | Hutchins A R, Kribs J D, Muncey R D, et al. Assessment of stabilization mechanisms of confined, turbulent, lifted jet flames: effects of ambient coflow[C]//Proceedings of the ASME 2013 Power Conference. Boston, Massachusetts, USA, 2013. |
18 | Yan Y, Ye T H, Jiang N P. Experimental investigation on burner lip thickness effect on the liftoff and blowout velocities of jet diffusion flame[J]. Journal of Engineering Thermophysics, 2017, 26(3): 416-426. |
19 | Cha M S, Chung S H. Characteristics of lifted flames in nonpremixed turbulent confined jets[J]. Symposium (International) on Combustion, 1996, 26(1): 121-128. |
20 | Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. |
21 | Suris A L, Flankin E V,Shorin S N. Length of free diffusion flames[J]. Combustion Explosion & Shock Waves, 1977, 13(4): 459-462. |
22 | Mccaffrey B J. Flame height[M]// SFPE Fire Protection Handbook. Berlin: Springer, 1988. |
23 | Quintiere J G, Grove B S. A unified analysis for fire plumes[J]. Symposium (International) on Combustion,1998, 27(2): 2757-2766. |
24 | Bradley D, Gaskell P H, Gu X J, et al. Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates[J]. Combustion and Flame, 2016, 164: 400-409. |
25 | 周魁斌, 刘娇艳, 蒋军成. 高压可燃气体泄漏动力学过程与喷射火热灾害分析[J]. 化工学报, 2018, 69(4): 1276-1287. |
Zhou K B, Liu J Y, Jiang J C. Analyses on dynamical process of high pressure combustible gas leakage and thermal hazard of jet fire[J]. CIESC Journal, 2018, 69(4): 1276-1287. | |
26 | Santos A, Costa M. Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames[J]. Combustion and Flame, 2005, 142(1/2): 160-169. |
27 | Peters N. Turbulent Combustion[M]. Cambridge: Cambridge University Press, 2000: 239. |
28 | Kalghatgi G T. Blow-out stability of gaseous jet diffusion flames[J]. Combustion Science and Technology, 1981, (5/6): 233-239. |
29 | Turns S R. An Introduction to Combustion: Concepts and Applications[M]. WCB/McGraw-Hill, 2000: 507. |
30 | Palacios A, Bradley D. Generalised correlations of blow-off and flame quenching for sub-sonic and choked jet flames[J]. Combustion and Flame, 2017, 185: 309-318. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[5] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[6] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[7] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[8] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[9] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[10] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[11] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[12] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[13] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[14] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[15] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||