化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 120-126.doi: 10.11949/0438-1157.20201563

• 流体力学与传递现象 • 上一篇    下一篇

纵向涡强化圆管内换热的数值模拟及性能分析

李凡1(),陆高锋1,马光柏1,2,翟晓强1(),杨顺法3   

  1. 1.上海交通大学机械与动力工程学院,上海 200240
    2.山东力诺瑞特新能源有限公司,山东 济南 250103
    3.云南建投第十三建设有限公司,云南 昆明 650102
  • 收稿日期:2020-11-02 修回日期:2021-01-25 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 翟晓强 E-mail:2545156620@qq.com;xqzhai@sjtu.edu.cn
  • 作者简介:李凡(1996—),女,硕士研究生,2545156620@qq.com

Numerical simulation and performance analysis of heat transfer enhancement in tube by longitudinal vortex

LI Fan1(),LU Gaofeng1,MA Guangbai1,2,ZHAI Xiaoqiang1(),YANG Shunfa3   

  1. 1.College of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Shandong Linuo Ruite New Energy Co. , Ltd. , Jinan 250103, Shandong, China
    3.Yunnan Jiantou Thirteenth Construction Co. , Ltd. , Kunming 650102, Yunnan, China
  • Received:2020-11-02 Revised:2021-01-25 Published:2021-06-20 Online:2021-06-20
  • Contact: ZHAI Xiaoqiang E-mail:2545156620@qq.com;xqzhai@sjtu.edu.cn

摘要:

对布置有涡发生器小翼对的圆管内部湍流流动和强化传热特性进行了三维数值模拟。研究了涡发生器的形状和对数对流动传热特性的影响并采用综合性能指标进行优化。结果表明:涡发生器后横截面上产生的多纵向涡结构使管内流体混合更加充分,促进了壁面边界层与主流的动量和能量交换,提高了传热强度。每排4对矩形小翼时的换热性能最好,Nusselt数比光管平均提高了27.2%。相同形状下,每排4对涡发生器的综合性能均高于每排3对;相同对数下,梯形小翼的综合性能最好,三角形小翼次之,矩形小翼最差。每排4对梯形小翼时的整体综合性能最优,性能评价标准达到了0.97~1.07。

关键词: 传热, 流动, 湍流, 涡发生器, 纵向涡

Abstract:

Various technologies on heat transfer enhancement have been exploited to develop more efficient compact heat exchanging devices. In this research, turbulent heat transfer and flow characteristics in a circular tube, with longitudinal vortex generators (LVG) on the wall, were numerically investigated. The effects of LVG shapes and number of pairs on Nusselt number, friction factor and performance evaluation criteria were numerically studied. The results showed that pairs of longitudinal vortexes were generated behind the LVG, which enhanced the fluid mixing in the tube, and promoted the momentum and energy exchange between the wall boundary layer and the main flow. Further analysis indicated that the tube with 4 pairs of rectangular winglets on each row held the best heat transfer performance, and the Nusselt number was improved by 27.2% compared with smooth tube on average. The tube with 4 pairs of trapezoidal winglets on each row presented the best performance evaluation criteria, and the value reached 0.97 — 1.07.

Key words: heat transfer, flow, turbulent flow, vortex generator, longitudinal vortex

中图分类号: 

  • TK 124

图1

LVG在圆管壁面上布置"

图2

不同形状和对数的LVG结构"

图3

模型验证"

图4

二次流流线和速度云图"

图5

横截面温度云图"

图6

壁面温度云图和局部Nusselt数云图"

图7

LVG的形状和对数对传热与流动特性的影响"

1 Alam T, Kim M H. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 813-839.
2 Li H W, You R Q, Deng H W, et al. Heat transfer investigation in a rotating U-turn smooth channel with irregular cross-section [J]. International Journal of Heat and Mass Transfer, 2016, 96: 267-277.
3 Qiu L, Deng H W, Sun J N, et al. Pressure drop and heat transfer in rotating smooth square U-duct under high rotation numbers [J]. International Journal of Heat and Mass Transfer, 2013, 66: 543-552.
4 Wangnipparnto S, Tiansuwan J, Kiatsiriroat T, et al. Performance analysis of thermosyphon heat exchanger under electric field [J]. Energy Conversion and Management, 2003, 44(7): 1163-1175.
5 Tada Y, Yoshioka S, Takimoto A, et al. Heat transfer enhancement in a gas-solid suspension flow by applying electric field [J]. International Journal of Heat and Mass Transfer, 2016, 93: 778-787.
6 Li Q, Xuan Y M. Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field [J]. Experimental Thermal and Fluid Science, 2009, 33(4): 591-596.
7 Goharkhah M, Salarian A, Ashjaee M, et al. Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field [J]. Powder Technology, 2015, 274: 258-267.
8 Jin D X, Lee Y P, Lee D Y. Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel [J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16): 3062-3071.
9 Akdag U, Komur M A, Akcay S. Prediction of heat transfer on a flat plate subjected to a transversely pulsating jet using artificial neural networks [J]. Applied Thermal Engineering, 2016, 100: 412-420.
10 Liu J Z, Gao J M, Gao T Y, et al. Heat transfer characteristics in steam-cooled rectangular channels with two opposite rib-roughened walls [J]. Applied Thermal Engineering, 2013, 50(1): 104-111.
11 Deo N S, Chander S, Saini J S. Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs [J]. Renewable Energy, 2016, 91: 484-500.
12 Thakur D S, Khan M K, Pathak M. Performance evaluation of solar air heater with novel hyperbolic rib geometry [J]. Renewable Energy, 2017, 105: 786-797.
13 Karabacak R, Yakar G. Forced convection heat transfer and pressure drop for a horizontal cylinder with vertically attached imperforate and perforated circular fins [J]. Energy Conversion and Management, 2011, 52(8/9): 2785-2793.
14 Priyam A, Chand P. Thermal and thermohydraulic performance of wavy finned absorber solar air heater [J]. Solar Energy, 2016, 130: 250-259.
15 Tamna S, Skullong S, Thianpong C, et al. Heat transfer behaviors in a solar air heater channel with multiple V-baffle vortex generators [J]. Solar Energy, 2014, 110: 720-735.
16 Sadeghi O, Mohammed H A, Bakhtiari-Nejad M, et al. Heat transfer and nanofluid flow characteristics through a circular tube fitted with helical tape inserts [J]. International Communications in Heat and Mass Transfer, 2016, 71: 234-244.
17 San J Y, Huang W C, Chen C G. Experimental investigation on heat transfer and fluid friction correlations for circular tubes with coiled-wire inserts [J]. International Communications in Heat and Mass Transfer, 2015, 65: 8-14.
18 Wongcharee K, Eiamsa-Ard S. Heat transfer enhancement by twisted tapes with alternate-axes and triangular, rectangular and trapezoidal wings [J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(2): 211-219.
19 Awais M, Bhuiyan A A. Heat transfer enhancement using different types of vortex generators (VGs): a review on experimental and numerical activities [J]. Thermal Science and Engineering Progress, 2018, 5: 524-545.
20 Kotcioglu I, Caliskan S, Cansiz A, et al. Second law analysis and heat transfer in a cross-flow heat exchanger with a new winglet-type vortex generator [J]. Energy, 2010, 35(9): 3686-3695.
21 Skullong S, Promvonge P, Thianpong C, et al. Thermal performance in solar air heater channel with combined wavy-groove and perforated-delta wing vortex generators [J]. Applied Thermal Engineering, 2016, 100: 611-620.
22 Khanjian A, Habchi C, Russeil S, et al. Effect of rectangular winglet pair roll angle on the heat transfer enhancement in laminar channel flow [J]. International Journal of Thermal Sciences, 2017, 114: 1-14.
23 Akcayoglu A. Flow past confined delta-wing type vortex generators [J]. Experimental Thermal and Fluid Science, 2011, 35(1): 112-120.
24 Promvonge P, Jedsadaratanachai W, Kwankaomeng S, et al. 3D simulation of laminar flow and heat transfer in V-baffled square channel [J]. International Communications in Heat and Mass Transfer, 2012, 39(1): 85-93.
25 武俊梅, 陶文铨. 纵向涡强化换热的数值研究及场协同原理分析[J]. 西安交通大学学报, 2006, 40(7): 757-761.
Wu J M, Tao W Q. Numerical analysis to vortex heat transfer enhancement based on field synergy principle [J]. Journal of Xi'an Jiaotong University, 2006, 40(7): 757-761.
26 Lu G F, Zhou G B. Numerical simulation on performances of plane and curved winglet - pair vortex generators in a rectangular channel and field synergy analysis [J]. International Journal of Thermal Sciences, 2016, 109: 323-333.
27 田林, 柏巍, 薛山虎, 等. 纵向涡发生器对矩形通道内流动换热的影响研究[J]. 工程热物理学报, 2013, 34(2): 324-327.
Tian L, Bai W, Xue S H, et al. Numerical study of influence of longitudinal vortex generator on flow and heat transfer in rectangular channel [J]. Journal of Engineering Thermophysics, 2013, 34(2): 324-327.
28 Wu J M, Tao W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator(Part A): Verification of field synergy principle [J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1179-1191.
29 Li Y X, Wang X, Zhang J, et al. Comparison and analysis of the arrangement of delta winglet pair vortex generators in a half coiled jacket for heat transfer enhancement [J]. International Journal of Heat and Mass Transfer, 2019, 129: 287-298.
30 车翠翠, 田茂诚. 圆管内置梯形翼片的流场特性PIV试验[J]. 化工学报, 2013, 64(11): 3976-3984.
Che C C, Tian M C. PIV experiment on flow disturbance characteristics of embedded trapezoid winglets in tube [J]. CIESC Journal, 2013, 64(11): 3976-3984.
31 Zhai C, Islam M D, Simmons R, et al. Heat transfer augmentation in a circular tube with delta winglet vortex generator pairs [J]. International Journal of Thermal Sciences, 2019, 140: 480-490.
32 Xu Y B, Islam M D, Kharoua N. Numerical study of winglets vortex generator effects on thermal performance in a circular pipe [J]. International Journal of Thermal Sciences, 2017, 112: 304-317.
[1] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[2] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[3] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[4] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[5] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[6] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[7] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[8] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[9] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[10] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[11] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
[12] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[13] 燕子腾, 吴国明, 庄大伟, 丁国良, 曹法立, 孟建军. 用于微通道换热器的循环流道分流器的设计方法与应用效果[J]. 化工学报, 2021, 72(S1): 77-83.
[14] 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105.
[15] 王彦红, 陆英楠, 李素芬, 东明. U形圆管中超临界压力RP-3航空煤油换热数值研究[J]. 化工学报, 2021, 72(9): 4639-4648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐欧官, 苏宏业, 计建炳, 金晓明, 褚健. 甲苯歧化与C9芳烃烷基转移反应动力学模型和模拟分析[J]. CIESC Journal, 2007, 15(3): 326 -332 .
[2] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[3] 周彩荣, 石晓华, 王海峰, 高玉国, 蒋登高. 反式-1,2-环基二醇+乙酸丁酯+水三元体系固液相平衡[J]. CIESC Journal, 2007, 15(3): 449 -452 .
[4] 张玉玲, 黄君礼, 程志辉, 杨士林. 微波溶剂法合成天冬氨酸-谷氨酸共聚物研究[J]. CIESC Journal, 2007, 15(3): 458 -462 .
[5] 牟盛静, 苏宏业, 古勇, 褚健. 工业PTA氧化过程的多目标优化[J]. CIESC Journal, 2003, 11(5): 536 -541 .
[6] 胡国勤, 陈鸿雁, 蔡建国, 邓修. 用含夹带剂丙酮的超临界CO2快速膨胀法制备灰黄霉素的微细颗粒[J]. CIESC Journal, 2003, 11(4): 403 -407 .
[7] 方东宇, 孙建中, 周其云, 冯博. 稀土催化剂上丁二烯气相聚合的宏观动力学研究[J]. CIESC Journal, 2002, 10(3): 328 -332 .
[8] 淮秀兰, 刘登瀛, SHIGERU Koyama, BIDYUT Baran Saha. 对撞流干燥的实验与理论研究[J]. CIESC Journal, 2003, 11(1): 42 -48 .
[9] 李小年, 刘化章, 岑亚青, 胡樟能. 维氏体铁基氨合成催化剂动力学分析[J]. CIESC Journal, 2003, 11(1): 19 -26 .
[10] 刘刚, 徐志南, 岑沛霖. A Population Morphologically Structured Model for MicroscopicGrowth of Filamentous
Microorganism
[J]. CIESC Journal, 1999, 7(3): 252 -262 .