化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 120-126.doi: 10.11949/0438-1157.20201563
LI Fan1(),LU Gaofeng1,MA Guangbai1,2,ZHAI Xiaoqiang1(
),YANG Shunfa3
摘要:
对布置有涡发生器小翼对的圆管内部湍流流动和强化传热特性进行了三维数值模拟。研究了涡发生器的形状和对数对流动传热特性的影响并采用综合性能指标进行优化。结果表明:涡发生器后横截面上产生的多纵向涡结构使管内流体混合更加充分,促进了壁面边界层与主流的动量和能量交换,提高了传热强度。每排4对矩形小翼时的换热性能最好,Nusselt数比光管平均提高了27.2%。相同形状下,每排4对涡发生器的综合性能均高于每排3对;相同对数下,梯形小翼的综合性能最好,三角形小翼次之,矩形小翼最差。每排4对梯形小翼时的整体综合性能最优,性能评价标准达到了0.97~1.07。
中图分类号:
1 | Alam T, Kim M H. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 813-839. |
2 | Li H W, You R Q, Deng H W, et al. Heat transfer investigation in a rotating U-turn smooth channel with irregular cross-section [J]. International Journal of Heat and Mass Transfer, 2016, 96: 267-277. |
3 | Qiu L, Deng H W, Sun J N, et al. Pressure drop and heat transfer in rotating smooth square U-duct under high rotation numbers [J]. International Journal of Heat and Mass Transfer, 2013, 66: 543-552. |
4 | Wangnipparnto S, Tiansuwan J, Kiatsiriroat T, et al. Performance analysis of thermosyphon heat exchanger under electric field [J]. Energy Conversion and Management, 2003, 44(7): 1163-1175. |
5 | Tada Y, Yoshioka S, Takimoto A, et al. Heat transfer enhancement in a gas-solid suspension flow by applying electric field [J]. International Journal of Heat and Mass Transfer, 2016, 93: 778-787. |
6 | Li Q, Xuan Y M. Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field [J]. Experimental Thermal and Fluid Science, 2009, 33(4): 591-596. |
7 | Goharkhah M, Salarian A, Ashjaee M, et al. Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field [J]. Powder Technology, 2015, 274: 258-267. |
8 | Jin D X, Lee Y P, Lee D Y. Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel [J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16): 3062-3071. |
9 | Akdag U, Komur M A, Akcay S. Prediction of heat transfer on a flat plate subjected to a transversely pulsating jet using artificial neural networks [J]. Applied Thermal Engineering, 2016, 100: 412-420. |
10 | Liu J Z, Gao J M, Gao T Y, et al. Heat transfer characteristics in steam-cooled rectangular channels with two opposite rib-roughened walls [J]. Applied Thermal Engineering, 2013, 50(1): 104-111. |
11 | Deo N S, Chander S, Saini J S. Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs [J]. Renewable Energy, 2016, 91: 484-500. |
12 | Thakur D S, Khan M K, Pathak M. Performance evaluation of solar air heater with novel hyperbolic rib geometry [J]. Renewable Energy, 2017, 105: 786-797. |
13 | Karabacak R, Yakar G. Forced convection heat transfer and pressure drop for a horizontal cylinder with vertically attached imperforate and perforated circular fins [J]. Energy Conversion and Management, 2011, 52(8/9): 2785-2793. |
14 | Priyam A, Chand P. Thermal and thermohydraulic performance of wavy finned absorber solar air heater [J]. Solar Energy, 2016, 130: 250-259. |
15 | Tamna S, Skullong S, Thianpong C, et al. Heat transfer behaviors in a solar air heater channel with multiple V-baffle vortex generators [J]. Solar Energy, 2014, 110: 720-735. |
16 | Sadeghi O, Mohammed H A, Bakhtiari-Nejad M, et al. Heat transfer and nanofluid flow characteristics through a circular tube fitted with helical tape inserts [J]. International Communications in Heat and Mass Transfer, 2016, 71: 234-244. |
17 | San J Y, Huang W C, Chen C G. Experimental investigation on heat transfer and fluid friction correlations for circular tubes with coiled-wire inserts [J]. International Communications in Heat and Mass Transfer, 2015, 65: 8-14. |
18 | Wongcharee K, Eiamsa-Ard S. Heat transfer enhancement by twisted tapes with alternate-axes and triangular, rectangular and trapezoidal wings [J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(2): 211-219. |
19 | Awais M, Bhuiyan A A. Heat transfer enhancement using different types of vortex generators (VGs): a review on experimental and numerical activities [J]. Thermal Science and Engineering Progress, 2018, 5: 524-545. |
20 | Kotcioglu I, Caliskan S, Cansiz A, et al. Second law analysis and heat transfer in a cross-flow heat exchanger with a new winglet-type vortex generator [J]. Energy, 2010, 35(9): 3686-3695. |
21 | Skullong S, Promvonge P, Thianpong C, et al. Thermal performance in solar air heater channel with combined wavy-groove and perforated-delta wing vortex generators [J]. Applied Thermal Engineering, 2016, 100: 611-620. |
22 | Khanjian A, Habchi C, Russeil S, et al. Effect of rectangular winglet pair roll angle on the heat transfer enhancement in laminar channel flow [J]. International Journal of Thermal Sciences, 2017, 114: 1-14. |
23 | Akcayoglu A. Flow past confined delta-wing type vortex generators [J]. Experimental Thermal and Fluid Science, 2011, 35(1): 112-120. |
24 | Promvonge P, Jedsadaratanachai W, Kwankaomeng S, et al. 3D simulation of laminar flow and heat transfer in V-baffled square channel [J]. International Communications in Heat and Mass Transfer, 2012, 39(1): 85-93. |
25 | 武俊梅, 陶文铨. 纵向涡强化换热的数值研究及场协同原理分析[J]. 西安交通大学学报, 2006, 40(7): 757-761. |
Wu J M, Tao W Q. Numerical analysis to vortex heat transfer enhancement based on field synergy principle [J]. Journal of Xi'an Jiaotong University, 2006, 40(7): 757-761. | |
26 | Lu G F, Zhou G B. Numerical simulation on performances of plane and curved winglet - pair vortex generators in a rectangular channel and field synergy analysis [J]. International Journal of Thermal Sciences, 2016, 109: 323-333. |
27 | 田林, 柏巍, 薛山虎, 等. 纵向涡发生器对矩形通道内流动换热的影响研究[J]. 工程热物理学报, 2013, 34(2): 324-327. |
Tian L, Bai W, Xue S H, et al. Numerical study of influence of longitudinal vortex generator on flow and heat transfer in rectangular channel [J]. Journal of Engineering Thermophysics, 2013, 34(2): 324-327. | |
28 | Wu J M, Tao W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator(Part A): Verification of field synergy principle [J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1179-1191. |
29 | Li Y X, Wang X, Zhang J, et al. Comparison and analysis of the arrangement of delta winglet pair vortex generators in a half coiled jacket for heat transfer enhancement [J]. International Journal of Heat and Mass Transfer, 2019, 129: 287-298. |
30 | 车翠翠, 田茂诚. 圆管内置梯形翼片的流场特性PIV试验[J]. 化工学报, 2013, 64(11): 3976-3984. |
Che C C, Tian M C. PIV experiment on flow disturbance characteristics of embedded trapezoid winglets in tube [J]. CIESC Journal, 2013, 64(11): 3976-3984. | |
31 | Zhai C, Islam M D, Simmons R, et al. Heat transfer augmentation in a circular tube with delta winglet vortex generator pairs [J]. International Journal of Thermal Sciences, 2019, 140: 480-490. |
32 | Xu Y B, Islam M D, Kharoua N. Numerical study of winglets vortex generator effects on thermal performance in a circular pipe [J]. International Journal of Thermal Sciences, 2017, 112: 304-317. |
[1] | 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139. |
[2] | 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177. |
[3] | 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193. |
[4] | 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202. |
[5] | 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
[6] | 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277. |
[7] | 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294. |
[8] | 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301. |
[9] | 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317. |
[10] | 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335. |
[11] | 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355. |
[12] | 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389. |
[13] | 燕子腾, 吴国明, 庄大伟, 丁国良, 曹法立, 孟建军. 用于微通道换热器的循环流道分流器的设计方法与应用效果[J]. 化工学报, 2021, 72(S1): 77-83. |
[14] | 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105. |
[15] | 王彦红, 陆英楠, 李素芬, 东明. U形圆管中超临界压力RP-3航空煤油换热数值研究[J]. 化工学报, 2021, 72(9): 4639-4648. |
|