化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1817-1825.DOI: 10.11949/0438-1157.20211852
收稿日期:
2021-12-30
修回日期:
2022-02-14
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
朱春宇
作者简介:
陈子禾(1997—),男,硕士研究生,基金资助:
Zihe CHEN(),Chengzhi ZHAO,Wenli MAO,Nan SHENG,Chunyu ZHU(
)
Received:
2021-12-30
Revised:
2022-02-14
Online:
2022-04-05
Published:
2022-04-25
Contact:
Chunyu ZHU
摘要:
针对石蜡热导率低以及易泄漏等问题,以生物质木头多孔碳作为导热填料骨架,利用壳聚糖改性木头多孔碳在其竖向孔道中生长碳薄片形成分级多孔网络结构,并与石蜡复合制成定形复合相变材料(PCC)。结果表明,由于分级多孔网络骨架的引入,PCC的定形效果好,无明显泄漏,其相变焓值为126.9 J/g,经100次熔化凝固循环测试,其相变温度和焓值均无明显变化,具有良好的循环稳定性。PCC的导热性能具有较大提高,且呈现明显的各向导热异性,平面外和平面内热导率分别为0.67和0.41 W/(m·K)。此外,通过模拟太阳光进行光热实验,发现PCC具有良好的光热转换性能。本复合相变材料在储热以及热管理领域具有应用前景。
中图分类号:
陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
Zihe CHEN, Chengzhi ZHAO, Wenli MAO, Nan SHENG, Chunyu ZHU. Preparation and thermal properties of phase change composites supported by oriented biomass porous carbon[J]. CIESC Journal, 2022, 73(4): 1817-1825.
填料骨架命名 | 石蜡复合物 | 实验条件 |
---|---|---|
无填料 | Paraffin | 石蜡空白样品 |
C-1200 | C/P-1200 | 未改性,1200℃热处理 |
Ch/C-1200 | Ch/C/P-1200 | 壳聚糖改性,1200℃热处理 |
表1 样品命名及实验条件
Table 1 Name of samples and experimental condition
填料骨架命名 | 石蜡复合物 | 实验条件 |
---|---|---|
无填料 | Paraffin | 石蜡空白样品 |
C-1200 | C/P-1200 | 未改性,1200℃热处理 |
Ch/C-1200 | Ch/C/P-1200 | 壳聚糖改性,1200℃热处理 |
样品 | 熔化过程 | 凝固过程 | ||
---|---|---|---|---|
Tmp/℃ | ΔHm /(J/g) | Tsp/℃ | ΔHs/(J/g) | |
Paraffin | 58.0 | 203.9 | 49.8 | 204.0 |
C/P-1200 | 58.4 | 130.2 | 48.9 | 129.3 |
Ch/C/P-1200 | 59.1 | 126.9 | 48.5 | 126.6 |
表2 复合相变材料熔化和凝固过程的相变温度及焓值
Table 2 Temperature and enthalpy of PCC during melting and solidification
样品 | 熔化过程 | 凝固过程 | ||
---|---|---|---|---|
Tmp/℃ | ΔHm /(J/g) | Tsp/℃ | ΔHs/(J/g) | |
Paraffin | 58.0 | 203.9 | 49.8 | 204.0 |
C/P-1200 | 58.4 | 130.2 | 48.9 | 129.3 |
Ch/C/P-1200 | 59.1 | 126.9 | 48.5 | 126.6 |
10 | Yang L, Yao Y, Zhang D D, et al. Progress of organic phase change energy storage materials[J]. Advances in New and Renewable Energy, 2019, 7(5): 464-472. |
11 | Tong X, Li N Q, Zeng M, et al. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: recent advancement and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 398-422. |
12 | 胡定华, 许肖永, 林肯, 等. 石蜡/膨胀石墨/石墨片复合相变材料导热性能研究[J]. 工程热物理学报, 2021, 42(9): 2414-2418. |
Hu D H, Xu X Y, Lin K, et al. Study on heat conductivity of paraffin/expanded graphite/graphite sheet composite material[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2414-2418. | |
13 | Zhou Y, Sun W C, Ling Z Y, et al. Hydrophilic modification of expanded graphite to prepare a high-performance composite phase change block containing a hydrate salt[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14799-14806. |
14 | 华维三, 章学来, 罗孝学, 等. 纳米金属/石蜡复合相变蓄热材料的实验研究[J]. 太阳能学报, 2017, 38(6): 1723-1728. |
Hua W S, Zhang X L, Luo X X, et al. Experimental study of nanometal-paraffin composite phase change heat storage material[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1723-1728. | |
15 | Sheng N, Dong K X, Zhu C Y, et al. Thermal conductivity enhancement of erythritol phase change material with percolated aluminum filler[J]. Materials Chemistry and Physics, 2019, 229: 87-91. |
16 | Zhao B, Wang Y C, Wang C B, et al. Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3 [J]. Journal of Energy Storage, 2021, 42: 103028. |
17 | Maher H, Rocky K A, Bassiouny R, et al. Synthesis and thermal characterization of paraffin-based nanocomposites for thermal energy storage applications[J]. Thermal Science and Engineering Progress, 2021, 22: 100797. |
18 | Yuan W Z, Yang X Q, Zhang G Q, et al. A thermal conductive composite phase change material with enhanced volume resistivity by introducing silicon carbide for battery thermal management[J]. Applied Thermal Engineering, 2018, 144: 551-557. |
19 | Wu S, Li T X, Yan T, et al. High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 102: 733-744. |
1 | Lin Y X, Jia Y T, Alva G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. |
2 | Feng D L, Feng Y H, Qiu L, et al. Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 578-605. |
20 | Hu X P, Wu H, Lu X, et al. Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 478-491. |
21 | Chriaa I, Karkri M, Trigui A, et al. The performances of expanded graphite on the phase change materials composites for thermal energy storage[J]. Polymer, 2021, 212: 123128. |
22 | Zou D Q, Ma X F, Liu X S, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120: 33-41. |
23 | Yu S, Jeong S G, Chung O, et al. Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2014, 120: 549-554. |
24 | Yang J, Qi G Q, Tang L S, et al. Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage[J]. Journal of Materials Chemistry A, 2016, 4(24): 9625-9634. |
25 | Wu S Y, Chen Q Y, Chen D D, et al. Multiscale study of thermal conductivity of boron nitride nanosheets/paraffin thermal energy storage materials[J]. Journal of Energy Storage, 2021, 41: 102931. |
26 | Yang J, Li X F, Han S, et al. High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability[J]. Journal of Materials Chemistry A, 2018, 6(14): 5880-5886. |
27 | Yang J, Qi G Q, Bao R Y, et al. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials[J]. Energy Storage Materials, 2018, 13: 88-95. |
28 | Wei Y H, Li J J, Sun F R, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858-1865. |
29 | Palazzolo M A, Dourges M A, Magueresse A, et al. Preparation of lignosulfonate-based carbon foams by pyrolysis and their use in the microencapsulation of a phase change material[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2453-2461. |
30 | Li B X, Liu T X, Hu L Y, et al. Fabrication and properties of microencapsulated Paraffin@SiO2 phase change composite for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 374-380. |
31 | Xue G B, Liu K, Chen Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 15052-15057. |
32 | Zhu M W, Li Y J, Chen G, et al. Tree-inspired design for high-efficiency water extraction[J]. Advanced Materials, 2017, 29(44): 1704107. |
33 | Qian T T, Zhu S K, Wang H L, et al. Comparative study of single-walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase-change material composites[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2446-2458. |
3 | Nazir H, Batool M, Bolivar Osorio F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
4 | 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3553-3564. |
Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70(9): 3553-3564. | |
5 | Mohamed S A, Al-Sulaiman F A, Ibrahim N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089. |
6 | Alva G, Liu L K, Huang X, et al. Thermal energy storage materials and systems for solar energy applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 693-706. |
7 | Khan M M A, Saidur R, Al-Sulaiman F A. A review for phase change materials (PCMs) in solar absorption refrigeration systems[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 105-137. |
8 | Nofal M, Al-Hallaj S, Pan Y Y. Thermal management of lithium-ion battery cells using 3D printed phase change composites[J]. Applied Thermal Engineering, 2020, 171: 115126. |
9 | Arshad A, Jabbal M, Shi L, et al. Development of TiO2/RT-35HC based nanocomposite phase change materials (NCPCMs) for thermal management applications[J]. Sustainable Energy Technologies and Assessments, 2021, 43: 100865. |
10 | 杨磊, 姚远, 张冬冬, 等. 有机相变储能材料的研究进展[J]. 新能源进展, 2019, 7(5): 464-472. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[8] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[9] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[15] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 357
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 396
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||