化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4279-4291.doi: 10.11949/0438-1157.20201639

• 表面与界面工程 • 上一篇    下一篇

考虑密封环材料属性和表面形貌干气密封启停阶段的动态接触特性分析

孙雪剑1,2(),宋鹏云1(),毛文元1,邓强国2,许恒杰1,陈维1,2   

  1. 1.昆明理工大学化学工程学院,云南 昆明 650500
    2.昆明理工大学机电工程学院,云南 昆明 650500
  • 收稿日期:2020-11-12 修回日期:2021-05-11 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 宋鹏云 E-mail:xuejian.sun@hotmail.com;songpengyunkm@sina.com
  • 作者简介:孙雪剑(1991—),男,博士研究生,xuejian.sun@hotmail.com
  • 基金资助:
    国家自然科学基金项目(51465026);昆明理工大学分析测试基金项目(2019P20173103005)

Dynamic contact analysis of dry gas seal during start-stop process considering material properties and surface topography of seal rings

Xuejian SUN1,2(),Pengyun SONG1(),Wenyuan MAO1,Qiangguo DENG2,Hengjie XU1,Wei CHEN1,2   

  1. 1.Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    2.Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • Received:2020-11-12 Revised:2021-05-11 Published:2021-08-05 Online:2021-08-05
  • Contact: Pengyun SONG E-mail:xuejian.sun@hotmail.com;songpengyunkm@sina.com

摘要:

干气密封启停阶段的端面接触是不可避免的,为了揭示端面发生接触时的力学特性以保证干气密封稳定运行,运用统计学接触理论和等效阻尼思想,考虑密封环材料属性,推导出适用于分析干气密封干摩擦界面法向动态接触刚度和动态接触阻尼的解析模型,并通过实验测得密封环真实表面形貌,确定了接触模型的初始参数。探究干气密封端面发生接触时动态接触刚度和接触阻尼等参数的变化规律。结果表明,动态接触刚度随接触比压、扰动振幅的增大而增大。扰动频率对动态接触刚度的作用效果远小于接触比压或振幅对接触刚度的作用效果。动态接触阻尼随接触比压的增大而增大,随扰动频率和振幅的增大而减小。通过与多种经典接触模型对比,当前的计算结果与GW模型更为接近。针对干气密封碳化硅作为动环、石墨作为静环的配对方式,在端面未发生磨损时,结合面的微扰动态特性以动态接触刚度为主,动态接触阻尼较弱。法向接触特性的变化主要考虑50%临界脱开转速之前的接触阶段。

关键词: 干气密封, 启停过程, 界面, 动态接触, 微尺度

Abstract:

The end-face contact during the start-stop process of the dry gas seal is inevitable.In order to reveal the mechanical characteristics when the end faces are in contact, the dry gas seal can operate stably. Using statistical contact theory and equivalent damping ideas, considering the material properties of the seal ring, an analytical model suitable for analyzing the normal dynamic contact stiffness and dynamic contact damping of the dry friction interface of the dry gas seal is derived. The real surface morphology of the seal ring was measured through experiments, and the initial parameters of the contact model were determined. The results show that the dynamic contact stiffness increases with the increase of contact pressure and disturbance amplitude. The effect of disturbance frequency on dynamic contact stiffness is much smaller than contact pressure or amplitude effect. Dynamic contact damping increases with the increase of contact pressure and decreases with disturbance frequency or amplitude. The current calculation results are closer to the GW model by comparing it with various contact models. The sealing rings' pairing is silicon carbide as the rotating ring and graphite as the stationary ring. When the end face is not worn, the contact surface's dynamic characteristics are mainly dynamic contact stiffness, and the dynamic contact damping is weak. The change of normal contact is mainly considered in the contact stage before the 50% critical detachment speed.

Key words: dry gas seal, start-stop process, interface, dynamic contact, microscale

中图分类号: 

  • TH 133.36

图1

干气密封结构及密封环微观表面"

图2

干气密封端面接触及微凸体变形示意图[32,35]"

图3

干气密封端面结构及密封环接触位置"

图4

实验测试装置及表面轮廓测试曲线"

表1

均方根偏差和均方根斜率差的实验数据"

实验数据

序号

静环动环
Rqs/μmRdqsRqr/μmRdqr
10.05000.05870.07000.0544
20.06000.06230.06000.0553
30.06000.06230.07000.0579
40.06000.06250.07000.0546
50.06000.06250.07000.0558
60.06000.05830.07000.0567
70.08000.06270.06000.0561
80.05000.05800.07000.0581
90.06000.06230.06000.0553
100.05000.05810.07000.0560
平均值Te0.05900.06080.06700.0560
文献结果Tr0.06400.06280.07000.0522
TrTe相对 误差8.47%3.29%4.48%-6.78%

表2

计算模型结构参数和材料参数"

参数数值参数数值
软材料的硬度 H/GPa0.7密封环外径 ro/mm77.78
等效弹性模量 E/GPa23.65密封环槽根半径 rg/mm69
最大接触压力因子 K0.577螺旋角 α/(°)15
塑性指数ψ18.6槽坝比 γ1
微扰频率 ω/Hz40槽数 Ng12
微扰振幅 X0/μm0.002~0.02动环碳化硅
密封环内径 ri/mm58.42静环石墨

图5

接触力模型正确性验证"

图6

接触比压对光滑平面与粗糙表面高度平均线之间的距离h和实际接触面积Am的影响"

图7

接触比压对动静态接触刚度的影响"

图8

接触比压对动态接触阻尼的影响"

图9

脱开转速膜厚对动态接触特性的影响"

图10

表面形貌参数对动态接触刚度、阻尼的影响"

图11

动态参数对动态接触刚度、阻尼的影响"

12 Hu S T, Huang W F, Liu X F, et al. Stability and tracking analysis of gas face seals under low-parameter conditions considering slip flow[J]. Journal of Vibroengineering, 2017, 19(3): 2126-2141.
13 江锦波, 滕黎明, 孟祥铠, 等. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202.
Jiang J B, Teng L M, Meng X K, et al. Dynamic characteristics of supercritical CO2 dry gas seal based on multi variables perturbation[J]. CIESC Journal, 2021, 72(4): 2190-2202.
14 孙宝财, 丁雪兴, 陈金林, 等. 干气密封摩擦界面法向接触刚度分形模型[J]. 振动与冲击, 2019, 38(18): 248-255.
Sun B C, Ding X X, Chen J L, et al. Fractal model for the normal contact stiffness of frictional interface in dry gas seals[J]. Journal of Vibration and Shock, 2019, 38(18): 248-255.
15 孙见君, 陈国旗, 嵇正波, 等. 接触式机械密封界面泄漏机理分析[J]. 化工学报, 2018, 69(4): 1528-1536.
Sun J J, Chen G Q, Ji Z B, et al. Analysis on leakage mechanism for contacting mechanical seal interface[J]. CIESC Journal, 2018, 69(4): 1528-1536.
16 魏龙, 顾伯勤, 刘其和, 等. 机械密封摩擦副端面接触分形模型的修正[J]. 化工学报, 2013, 64(5): 1723-1729.
Wei L, Gu B Q, Liu Q H, et al. Correction of contact fractal model for friction faces of mechanical seals[J]. CIESC Journal, 2013, 64(5): 1723-1729.
17 李辉光, 刘恒, 虞烈. 粗糙机械结合面的接触刚度研究[J]. 西安交通大学学报, 2011, 45(6): 69-74.
Li H G, Liu H, Yu L. Contact stiffness of rough mechanical joint surface[J]. Journal of Xi'an Jiaotong University, 2011, 45(6): 69-74.
18 Greenwood J A, Williamson J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1966, 295(1442): 300-319.
1 Huang W F, Lin Y B, Gao Z, et al. An acoustic emission study on the starting and stopping processes of a dry gas seal for pumps[J]. Tribology Letters, 2013, 49(2): 379-384.
2 Fan W J, Huang W F, Liu Y, et al. State evolution of dry gas seal during repeated start-stop operation using acoustic emission method[J]. Tribology Transactions, 2020, 63(1): 173-181.
19 彭旭东, 刘坤, 白少先, 等. 典型螺旋槽端面干式气体密封动压开启性能[J]. 化工学报, 2013, 64(1): 326-333.
Peng X D, Liu K, Bai S X, et al. Dynamic opening characteristics of dry gas seals with typical types of spiral grooves[J]. CIESC Journal, 2013, 64(1): 326-333.
20 Ruan B. Numerical modeling of dynamic sealing behaviors of spiral groove gas face seals[J]. Journal of Tribology, 2002, 124(1): 186-195.
21 范瑜, 宋鹏云, 许恒杰. 水蒸气润滑干气密封启动过程研究[J]. 化工学报, 2020, 71(8): 3671-3680.
Fan Y, Song P Y, Xu H J. Study on startup operation of dry gas seal with steam lubrication[J]. CIESC Journal, 2020, 71(8): 3671-3680.
22 Chang W R, Etsion I, Bogy D B. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109(2): 257-263.
23 Kogut L, Etsion I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69(5): 657-662.
24 Ruan B, Salant R F, Green I. A mixed lubrication model of liquid/gas mechanical face seals[J]. Tribology Transactions, 1997, 40(4): 647-657.
3 Ono K, Nomoto Y, Onigata J. Analysis of squeak in mechanical seal used in water pumps[R]. SAETechnical Paper Series. Warrendale, PA, United States: SAE International, 2000.
4 Kröger M, Neubauer M, Popp K. Experimental investigation on the avoidance of self-excited vibrations[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366(1866): 785-810.
25 Etsion I, Front I. A model for static sealing performance of end face seals[J]. Tribology Transactions, 1994, 37(1): 111-119.
26 Yuan Y, Gan L, Liu K, et al. Elastoplastic contact mechanics model of rough surface based on fractal theory[J]. Chinese Journal of Mechanical Engineering, 2017, 30(1): 207-215.
5 Kou G Y, Li X H, Wang Y, et al. Steady performance and dynamic characteristics of a superellipse groove dry gas seal at a high-speed condition[J]. Industrial Lubrication and Tribology, 2020, 72(6): 789-796.
6 Zirkelback N. Parametric study of spiral groove gas face seals[J]. Tribology Transactions, 2000, 43(2): 337-343.
7 徐奇超, 江锦波, 陈源, 等. 经典曲线型槽干气密封稳动态密封特性数值分析[J]. 摩擦学学报, 2018, 38(5): 584-594.
27 Tabor D. The Hardness of Metals[M]. Oxford: Oxford University Press, 2000.
28 Hutchings I M. The contributions of David Tabor to the science of indentation hardness[J]. Journal of Materials Research, 2009, 24(3): 581-589.
7 Xu Q C, Jiang J B, Chen Y, et al. Numerical analysis of steady-state and dynamic characteristics of typical molded line groove dry gas seals[J]. Tribology, 2018, 38(5): 584-594.
8 Chen Y, Peng X D, Jiang J B, et al. Experimental and theoretical studies of the dynamic behavior of a spiral-groove dry gas seal at high-speeds[J]. Tribology International, 2018, 125: 17-26.
29 Ioka I, Yoda S. Acoustic emission caused by reversed plastic deformation in polycrystalline graphite[J]. Journal of Nuclear Materials, 1987, 148(3): 344-350.
30 Antisari M V, Montone A, Jovic N, et al. Low energy pure shear milling: a method for the preparation of graphite nano-sheets[J]. Scripta Materialia, 2006, 55(11): 1047-1050.
31 Lundberg M, Calmunger M, Peng R L. In-situ SEM/EBSD study of deformation and fracture behaviour of flake cast iron[C]//13th Int. Conf. Fract, 2013: 1-9.
32 董沫辰, 宫经珠, 吕晋军, 等. 运用塑性指数进行密封材料的摩擦学设计[J]. 表面技术, 2017, 46(4): 180-185.
Dong M C, Gong J Z, Lyu J J, et al. Tribology design of sealing materials using plastic index[J]. Surface Technology, 2017, 46(4): 180-185.
33 Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625-633.
34 Johnson K. Contact Mechanics[M]. Cambridge: Cambridge University Press, 1985.
9 许恒杰, 宋鹏云, 毛文元, 等. 考虑氢气实际气体效应和阻塞流效应的螺旋槽干气密封动态特性分析[J]. 化工学报, 2017, 68(12): 4675-4684.
Xu H J, Song P Y, Mao W Y, et al. Dynamic characteristics of spiral groove dry gas seals with consideration of hydrogen real gas and choked flow effects[J]. CIESC Journal, 2017, 68(12): 4675-4684.
35 Abbott E, Firestone F. Specifying surface quality: a method based on accurate measurement and comparison[J]. Mechanical Engineering, 1933, 107: 569-572.
36 丁雪兴, 王平西, 张伟政, 等. 螺旋槽干气密封环端面摩擦试验及其性能分析[J]. 化工学报, 2017, 68(1): 208-214.
10 许恒杰, 宋鹏云, 毛文元, 等. 层流状态下高压高转速二氧化碳干气密封的惯性效应分析[J]. 化工学报, 2018, 69(10): 4311-4323.
Xu H J, Song P Y, Mao W Y, et al. Analysis on inertia effect of carbon dioxide dry gas seal at high speed and pressure under laminar condition[J]. CIESC Journal, 2018, 69(10): 4311-4323.
11 沈伟, 彭旭东, 江锦波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659.
36 Ding X X, Wang P X, Zhang W Z, et al. Analysis of tribological test and performance under rings end faces of spiral groove dry gas seal[J]. CIESC Journal, 2017, 68(1): 208-214.
37 傅卫平, 娄雷亭, 高志强, 等. 机械结合面法向接触刚度和阻尼的理论模型[J]. 机械工程学报, 2017, 53(9): 73-82.
Fu W P, Lou L T, Gao Z Q, et al. Theoretical model for the contact stiffness and damping of mechanical joint surface[J]. Journal of Mechanical Engineering, 2017, 53(9): 73-82.
38 刘延柱, 陈立群, 陈文良. 振动力学 [M]. 2版. 北京: 高等教育出版社, 2011.
Liu Y Z, Chen L Q, Chen W L. Vibration Mechanics[M]. 2nd ed. Beijing: Higher Education Press, 2011.
39 路泽鑫. 固-液结合面法向接触刚度、阻尼模型研究[D]. 西安: 西安理工大学, 2019.
Lu Z X. Study on normal contact stiffness and damping model of solid-liquid bonding surface[D]. Xi'an: Xi'anUniversity of Technology, 2019.
40 McCool J I. Relating profile instrument measurements to the functional performance of rough surfaces[J]. Journal of Tribology, 1987, 109(2): 264-270.
11 Shen W, Peng X D, Jiang J B, et al. Analysis on real effect of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC Journal, 2019, 70(7): 2645-2659.
41 Sayles R S, Thomas T R. Surface topography as a nonstationary random process[J]. Nature, 1978, 271(5644): 431-434.
42 McCool J I. Comparison of models for the contact of rough surfaces[J]. Wear, 1986, 107(1): 37-60.
43 Bush A W, Gibson R D, Keogh G P. The limit of elastic deformation in the contact of rough surfaces[J]. Mechanics Research Communications, 1976, 3(3): 169-174.
44 Gabriel R P. Fundamentals of spiral groove noncontacting face seals[J]. Lubrication Engineering, 1994, 50 (3): 215-224.
45 胡琼, 孙见君, 马晨波, 等. 基于微凸体侧接触模型的机械密封端面混合摩擦热理论预测[J]. 机械工程学报, 2017, 53(21): 102-108.
Hu Q, Sun J J, Ma C B, et al. Theoretical prediction of mixed frictional heat of mechanical seals based on shoulder-shoulder contact model of asperities[J]. Journal of Mechanical Engineering, 2017, 53(21): 102-108.
46 Green I. A transient dynamic analysis of mechanical seals including asperity contact and face deformation[J]. Tribology Transactions, 2002, 45(3): 284-293.
47 Zhao Y W, Maietta D M, Chang L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122(1): 86-93.
48 彭旭东, 李纪云, 盛颂恩, 等. 表面粗糙度对螺旋槽干式气体端面密封性能预测与结构优化的影响[J]. 摩擦学学报, 2007, 27(6): 567-572.
Peng X D, Li J Y, Sheng S E, et al. Effect of surface roughness on performance prediction and geometric optimization of a spiral-groove face seal[J]. Tribology, 2007, 27(6): 567-572.
49 Khonsari M, Booser E R. Applied Tribology [M]. New York: John Wiley & Sons Ltd., 2008.
[1] 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256.
[2] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[3] 朱晓兵, 李佳佳, 李怡宁, 杨洪月, 李小松, 刘景林. 氧化锰电催化析氧反应及其电极界面特性[J]. 化工学报, 2021, 72(S1): 398-405.
[4] 安美燕, 王洁冰, 徐震原, 王如竹. 基于LiCl溶液太阳能界面蒸发的连续式空气取水[J]. 化工学报, 2021, 72(S1): 70-76.
[5] 胡小龙, 公文学, 彭艺, 胡阳, 汤颖, 何辉, 李文愿, 赵钟兴, 赵祯霞. 配体诱导制备NM88(D)/COF-OMe复合材料及可见光芬顿联合降解抗生素磺胺甲嘧啶研究[J]. 化工学报, 2021, 72(9): 4730-4739.
[6] 李南星, 张麟. 靶向于Galectin-10蛋白的哮喘抑制剂设计[J]. 化工学报, 2021, 72(9): 4847-4853.
[7] 孟璐璐, 谢添玺, 陈志豪, 宇高義郎. 材料交错分布型传热板表面异态干涉沸腾传热特性研究[J]. 化工学报, 2021, 72(9): 4564-4572.
[8] 姜洪鹏, 白敏丽, 高栋栋, 高林松, 吕继组. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103.
[9] 江鹏, 江锦波, 彭旭东, 孟祥铠, 马艺. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254.
[10] 严如奇, 丁雪兴, 徐洁, 洪先志, 包鑫. 基于湍流模型的S-CO2干气密封流场与稳态性能分析[J]. 化工学报, 2021, 72(8): 4292-4303.
[11] 刘姝睿, 吴雪娥, 王远鹏. 纳米材料介导微生物胞外电子传递过程的研究进展[J]. 化工学报, 2021, 72(7): 3576-3589.
[12] 蔡中杰, 田盼, 黄忠亮, 黄猛, 黄加乐, 詹国武, 李清彪. 基于生物模板制备二氧化碳加氢反应的Cu/ZnO催化剂[J]. 化工学报, 2021, 72(7): 3668-3679.
[13] 崔锦,石川,赵金保. 机械压力对锂电池性能影响的研究进展[J]. 化工学报, 2021, 72(7): 3511-3523.
[14] 王宗旭,李紫欣,白璐,董海峰,张香平. 固/液界面纳米气泡形成及稳定性研究进展[J]. 化工学报, 2021, 72(7): 3466-3477.
[15] 阳源源, 王进芝, 杜俊哲, 杜奥冰, 赵井文, 崔光磊. 镁-氯溶剂化结构在镁基电解液中的作用[J]. 化工学报, 2021, 72(6): 3116-3129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姬忠礼, 彭书, 谭立村. 陶瓷过滤器脉冲反吹系统的流场的数值模拟[J]. CIESC Journal, 2003, 11(6): 626 -632 .
[2] 董朝霞, 李明远, 吴肇亮, 林梅钦. 交联聚合物线团的变形能力研究[J]. CIESC Journal, 2003, 11(6): 686 -690 .
[3] 曹维良, 徐金龙, 张敬畅. 超(亚)临界CO2中涂料基体的相行为研究[J]. CIESC Journal, 2003, 11(2): 181 -184 .
[4] 张晖, 宋孟浩, 黄金宝. 2-氯酚污染土壤原位臭氧化修复的数学模型[J]. CIESC Journal, 2003, 11(5): 555 -558 .
[5] 李永泉, 陈时飞, 岑沛霖. 微波辐照选育木聚糖酶高产菌宇佐美曲霉[J]. CIESC Journal, 2003, 11(5): 594 -597 .
[6] 费维扬, 孙兰义, 郭庆丰. 新一代的乱堆填料——梅花扁环[J]. CIESC Journal, 2002, 10(6): 631 -634 .
[7] 郭向云, F.J.Keil. 三维多孔颗粒中一级扩散和反应过程的蒙特卡罗模拟[J]. CIESC Journal, 2003, 11(4): 472 -476 .
[8] 尤学一, H.J.Bart. 搅拌萃取塔内单相流动不同雷诺平均湍流模型结果的比较[J]. CIESC Journal, 2003, 11(3): 362 -366 .
[9] 谭小耀, 杨乃涛, K.Li. 用于甲烷偶联的SrCe0.95Yb0.05O3-α中空纤维膜反应器建模[J]. CIESC Journal, 2003, 11(3): 289 -296 .
[10] 陈晓春, 李成岳, P.L.Silveston. 流向变换强制周期操作合成甲醇反应器的模型化[J]. CIESC Journal, 2003, 11(1): 9 -14 .