化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 179-186.DOI: 10.11949/0438-1157.20191100
汪宁1,2(),张学军1,2(),赵阳1,2,甘智华1,2,张春伟1,2,余萌1,2
收稿日期:
2019-10-07
修回日期:
2019-11-08
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
张学军
作者简介:
汪宁(1995—),女,硕士研究生,基金资助:
Ning WANG1,2(),Xuejun ZHANG1,2(),Yang ZHAO1,2,Zhihua GAN1,2,Chunwei ZHANG1,2,Meng YU1,2
Received:
2019-10-07
Revised:
2019-11-08
Online:
2020-04-25
Published:
2020-04-25
Contact:
Xuejun ZHANG
摘要:
博物馆文物保存过程中相对湿度对文物的影响尤其重要,因此针对目前小型展柜广泛采用的半导体制冷存在制冷量小的缺点,结合斯特林制冷机制冷量大、寿命长、安全可靠等优点,设计并搭建了一台基于斯特林制冷的文物恒湿展柜装置,实现对微环境中相对湿度的精确调节。将斯特林制冷机的冷头置于优化设计的水槽中用于控制水温,采用空气与水直接接触的方式控制展柜内空气湿度。结果表明:使用散热片以及小型循环水泵可以大幅提升冷头与水之间的换热效率;合理的风机控制策略可以有效提升展柜湿度调节速度,维持湿度稳定,降低系统能耗;展柜内的相对湿度在45.0%~65.0%之间连续可调,并能保持稳定。
中图分类号:
汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
Ning WANG, Xuejun ZHANG, Yang ZHAO, Zhihua GAN, Chunwei ZHANG, Meng YU. Design and experimental study on constant humidity relic showcase using Stirling cryocooler[J]. CIESC Journal, 2020, 71(S1): 179-186.
图1 文物恒湿展柜装置1—展柜;2—展柜外温湿度传感器;3—展柜内温湿度传感器;4—回风口;5—数据采集仪;6—计算机;7—展柜机箱;8—铂电阻温度计;9—水槽;10—水;11—斯特林制冷机;12—送风口
Fig.1 Schematic diagram of constant humidity relic showcase
1 | 周佶. 自然建造理念下的博物馆展柜设计研究[D]. 杭州: 中国美术学院, 2017. |
Zhou J. Study on the design of museum display cases under the concept of natural construction [D]. Hangzhou: The China Academy of Art, 2017. | |
2 | Huijbregts Z, Kramer R P, Martens M H J, et al. A proposed method to assess the damage risk of future climate change to museum objects in historic buildings [J]. Building and Environment, 2012, 55(9): 43-56. |
3 | Luo X L, Gu Z L, Li T Y, et al. Environmental control strategies for the in situ preservation of unearthed relics in archaeology museums [J]. Journal of Cultural Heritage, 2015, 16(6): 790-797. |
4 | 侯华波, 喻李葵. 温湿独立控制展柜的数值模拟研究[J]. 制冷与空调, 2017, 31(2): 210-214. |
Hou H B, Yu L K. Numerical simulation on the temperature and humidity independent control showcase [J]. Refrigeration & Air Conditioning, 2017, 31(2): 210-214. | |
5 | Pavlogeorgatos G. Environmental parameters in museums [J]. Building and Environment, 2003, 38(12): 1457-1462. |
6 | Scott D A. Bronze disease: a review of some chemical problems and the role of relative humidity [J]. Journal of the American Institute for Conservation, 2013, 29(2): 193-206. |
7 | Brill R H. Incipient crizzling in some early glasses [J]. Bulletin of the American Group. International Institute for Conservation of Historic and Artistic Works, 1972, 12(2): 46-47. |
8 | 侯华波. 文物保存湿度指标的确定方法及展框温湿度控制技术研究[D]. 长沙: 中南大学, 2007. |
Hou H B. Research on the determination method of cultural relic preservation humidity index and the temperature and humidity control technology of exhibition frame [D]. Changsha: Central South University, 2007. | |
9 | Frazer S, Magan N, Aldred D. The influence of water activity and temperature on germination, growth and sporulation of Stachybotrys chartarum strains [J]. Mycopathologia, 2011, 172(1): 17-23. |
10 | Padfield T. A cooled display case [J]. Museum International, 2009, 37(2): 102-103. |
11 | 李文杰. 不同边界条件下文物展柜的动力响应分析[D]. 北京: 北京交通大学, 2015. |
Li W J. Dynamic response analysis for showcase of cultural relics under different boundary conditions [D]. Beijing: Beijing Jiaotong University, 2015. | |
12 | 华东建筑设计院. 博物馆建筑设计规范: JGJ 66—9l [S]. 北京: 中国建筑工业出版社, 1991. |
East China Architeclural Design and Research Institute. Standard of museum architecture design: JGJ 66—9l [S]. Beijing: China Architecture and Building Press, 1991. | |
13 | 邓妮, 武双磊, 陈胡星. 调湿材料的研究概述[J]. 材料导报, 2013, 27(s2): 368-371. |
Deng N, Wu S L, Chen H X. Overview on research of humidity-controlling materials [J]. Material Review, 2013, 27(s2): 368-371. | |
14 | Julie C. Controlling relative humidity with saturated calcium nitrate solutions [J]. WaaC Newsletter, 1991, 13(1): 17-18. |
15 | 徐方圆, 解玉林, 吴来明. 文物保存微环境用调湿材料调湿性能研究[J]. 文物保护与考古科学, 2009, 21(s1): 18-23. |
Xu F Y, Xie Y L, Wu L M. Research on the performance of some humidity-controlling materials used in museum micro-environments [J]. Sciences of Conservation and Archaeology, 2009, 21(s1): 18-23. | |
16 | Simonova I A, Freni A, Restuccia G, et al. Water sorption on composite “silica modified by calcium nitrate” [J]. Microporous and Mesoporous Materials, 2009, 122(1/2/3): 223-228. |
17 | Aristov Y I. Challenging offers of material science for adsorption heat transformation: a review [J]. Applied Thermal Engineering, 2013, 50(2): 1610-1618. |
18 | 王恒旭, 张学军, 郑幼明, 等. 扩散吸收式恒湿文物展柜实验研究[J]. 低温工程, 2016, 209(1): 32-37. |
Wang H X, Zhang X J, Zheng Y M, et al. Experimental study on constant humidity relic showcase based on diffusion absorption refrigeration system [J]. Cryogenics, 2016, 209(1): 32-37. | |
19 | 杨秀荣, 刘媛媛, 孟凡良, 等. 基于半导体制冷的小空间控温除湿系统研究[J]. 现代科学仪器, 2012, 26(3): 51-54. |
Yang X R, Liu Y Y, Meng F L, et al. Investigation of temperature controlling and dehumidification system for small space based on semiconductor cooler [J]. Model Scientific Instruments, 2012, 26(3): 51-54. | |
20 | Vián J G, Astrain D, Dominguez M. Numerical modelling and a design of a thermoelectric dehumidifier [J]. Applied Thermal Engineering, 2002, 22(4): 407-422. |
21 | 万闪闪. 小型独立文物陈列柜微环境控制系统的研究[D]. 南京: 东南大学, 2008. |
Wan S S. Research on micro-environment control system of small independent cultural relic display cabinet [D]. Nanjing: Southeast University, 2008. | |
22 | 钟颖, 智能展柜温湿度测量与控制系统设计[D]. 合肥: 合肥工业大学, 2016. |
Zhong Y. Design of temperature and humidity measurement and control system of intelligent showcase [D]. Hefei: Hefei University of Technology, 2016. | |
23 | 李爱博. 单级半导体制冷器制冷特性分析及研究[D]. 武汉: 华中科技大学, 2011. |
LI A B. Analysis and research on the refrigeration characteristics of single-stage thermoelectric refrigerator [D]. Wuhan: Huazhong University, 2011. | |
24 | 程显耀. 半导体制冷热端散热器传热特性研究[D]. 济南: 山东大学, 2016. |
Cheng X Y. Research on heat transfer characteristics of heat sink in semiconductor refrigeration [D]. Jinan: Shandong University, 2016. | |
25 | 代彦军, 戴维涵, 王如竹. 半导体冰箱冷热端散热条件实验研究[J]. 工程热物理学报, 2005, 26(s1): 221-224. |
Dai Y J, Dai W H, Wang R Z. Experimental investigation on conditions of heat exchanging for both hot and cold sides in a thermoelectric refrigerator [J]. Journal of Engineering Thermophysics, 2005, 26(s1): 221-224. | |
26 | 陈曦, 吴亦农, 王维杨. 斯特林制冷机用于冰箱技术的发展优势[J]. 制冷学报, 2004, 25(4): 49-53. |
Chen X, Wu Y N, Wang W Y. Advantages of developing refrigerator technology using Stirling cycle cooler [J]. Journal of Refrigeration, 2004, 25(4): 49-53. | |
27 | 陈国邦. 小型低温制冷机原理[M]. 北京: 科学出版社, 2010: 97-176. |
Chen G B. Principle of Small Cryogenic Cooler [M]. Beijing: Science Press, 2010: 97-176. | |
28 | 曾烊平, 陈曦. 自由活塞斯特林制冷机的研究与应用进展[J]. 真空与低温, 2017, 23(2): 68-75. |
Zeng Y P, Chen X. Overview of research and application of free-piston Stirling cooler [J]. Vacuum and Cryogenics, 2017, 23(2): 68-75. | |
29 | Sun J F, Zhao C Z, Mu J L, et al. Tentative application of Stirling cooler technology in butter churning process [J]. European Food Research and Technology, 2013, 237(2): 223-228. |
30 | 陈曦, 张华, 吴亦农. 斯特林制冷机用于商业制冷的研究现状初析[J]. 制冷学报, 2008, 29(6): 51-56. |
Chen X, Zhang H, Wu Y N. Review of Stirling cooler key technologies applied in commercial refrigeration [J]. Journal of Refrigeration, 2008, 29(6): 51-56. | |
31 | Caughley A, Sellier M, Gschwendtner M, et al. A free-piston Stirling cryocooler using metal diaphragms [J]. Cryogenics, 2016, 80(01): 8-16. |
32 | 刘庸, 段兵兵, 张学军, 等. 直接接触式恒湿设备中热湿交换水箱的结构优化分析[J]. 低温工程, 2018, 225(5): 65-70. |
Liu Y, Duan B B, Zhang X J, et al. Structural optimization analysis of heat and mass transfer water tank in direct contact constant humidity equipment [J]. Cryogenics. 2018, 225(5): 65-70. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||