1 |
Stehlík P, Wadekar V V. Different strategies to improve industrial heat exchange[J]. Heat Transfer Engineering, 2002, 23(6): 36-48.
|
2 |
Bergles A. Heat transfer enhancement - the maturing of second-generation heat transfer technology[J]. Heat Transfer Engineering, 1997, 18(1): 47-55.
|
3 |
Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat & Mass Transfer, 2005, 48(9): 1797-1807.
|
4 |
Bergles A E. ExHFT for fourth generation heat transfer technology[J]. Experimental Thermal and Fluid Science, 2002, 26(2/3/4): 335-344.
|
5 |
过增元. 对流换热的物理机制及其控制: 速度场与热流场的协同[J]. 科学通报, 2000, 45(19): 2118-2122.
|
|
Guo Z Y. Mechanism and control of convective heat transfer—coordination of velocity and heat flow fields[J]. Science Bulletin, 2000, 45(19): 2118-2122.
|
6 |
Bell K J. Heat exchanger design for the process industries[J]. Journal of Heat Transfer, 2005, 126(6): 877-885.
|
7 |
Schlünder E U. Heat Exchanger Design Handbook[M]. Washington, D C: Hemisphere Publishing Corporation, 1983: 210-213.
|
8 |
Lutcha J, Nemcansky J. Performance improvement of tubular heat exchangers by helical baffles[J]. Chemical Engineering Research and Design, 1990, 68(3): 263-270.
|
9 |
Prithiviraj M, Andrews M J. Three dimensional numerical simulation of shell-and-tube heat exchangers (Part Ⅰ): Foundation and fluid mechanics[J]. Numerical Heat Transfer: Part A Applications, 1998, 33(8): 799-816.
|
10 |
Prithiviraj M, Andrews M J. Three-dimensional numerical simulation of shell-and-tube heat exchangers (Part Ⅱ): Heat transfer[J]. Numerical Heat Transfer: Part A Applications, 1998, 33(8): 817-828.
|
11 |
Kral D, Stehlik P, van der Ploeg H J, et al. Helical baffles in shell-and-tube heat exchangers (Part Ⅰ): Experimental verification[J]. Heat Transfer Engineering, 1996, 17(1): 93-101.
|
12 |
Selbas R, Ö Kızılkan, Reppich M. A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(4): 268-275.
|
13 |
Patel V K, Rao R V. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique[J]. Applied Thermal Engineering, 2010, 30(11/12): 1417-1425.
|
14 |
何雅玲, 陶文铨. 强化单相对流换热的基本机制[J]. 机械工程学报, 2009, 45(3): 27-38.
|
|
He Y L, Tao W Q. Basic mechanism of enhancing heat transfer of single relative flow[J]. Journal of Mechanical Engineering, 2009, 45(3): 27-38.
|
15 |
何雅玲, 雷勇刚, 田丽亭, 等. 高效低阻强化换热技术的三场协同性探讨[J]. 工程热物理学报, 2009, 30(11): 1904-1906.
|
|
He Y L, Lei Y G, Tian L T, et al. Discussion on three field synergy of high efficiency and low resistance enhanced heat exchange technology[J]. Journal of Engineering Thermophysics, 2009, 30(11): 1904-1906.
|
16 |
雷勇刚, 楚攀, 何雅玲, 等. 螺旋通道内受限外流传热和阻力特性的数值模拟[J]. 热能动力工程, 2007, 22(6): 656-660.
|
|
Lei Y G, Chu P, He Y L, et al. Numerical simulation of heat transfer and resistance characteristics of constrained external flow in helical channel[J]. Journal of Engineering for Thermal Energy and Power, 2007, 22(6): 656-660.
|
17 |
Nasr M R J, Shafeghat A. Fluid flow analysis and extension of rapid design algorithm for helical baffle heat exchangers[J]. Applied Thermal Engineering, 2008, 28(11/12): 1324-1332.
|
18 |
Lutcha J, Nemcansky J. Performance improvement of tubular heat exchangers by helical baffles[J]. Chemical Engineering Research and Design, 1990, 68(3): 263-270.
|
19 |
Dong C, Chen Y P, Wu J F. Influence of baffle configurations on flow and heat transfer characteristics of trisection helical baffle heat exchangers[J]. Energy Conversion and Management, 2014, 88: 251-258.
|
20 |
Wang Q, Chen G, Chen Q, et al. Review of improvements on shell-and-tube heat exchangers with helical baffles[J]. Heat Transfer Engineering, 2010, 31(10): 836-853.
|
21 |
Wen J, Yang H Z, Wang S, et al. Numerical investigation on baffle configuration improvement of the heat exchanger with helical baffles[J]. Energy Conversion and Management, 2015, 89: 438-448.
|
22 |
Lei Y G, He Y L, Chu P, et al. Design and optimization of heat exchangers with helical baffles[J]. Chemical Engineering Science, 2008, 63(17): 4386-4395.
|
23 |
Lei Y G, He Y L, Li R, et al. Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(12): 2336-2345.
|
24 |
杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 310-315.
|
|
Yang S M, Tao W Q. Heat Transfer Science[M]. 4th ed. Beijing: Higher Education Press, 2006: 310-315.
|
25 |
Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368.
|
26 |
Gnielinski V. On heat transfer in tubes[J]. International Journal of Heat and Mass Transfer, 2013, 63: 134-140.
|
27 |
Stehlik P, Nemcansky J, Kral D. Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles[J]. Heat Transfer Engineering, 1994, 15(1): 55-65.
|
28 |
Tao W Q, He Y L, Wang Q W, et al. A unified analysis on enhancing single phase convective heat transfer with field synergy principle[J]. International Journal of Heat & Mass Transfer, 2002, 45(24): 4871-4879.
|
29 |
Fan J F, Ding W K, Zhang J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 33-44.
|
30 |
He Y L, Tang S Z, Tao W Q, et al. A general and rapid method for performance evaluation of enhanced heat transfer techniques[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118780.
|