化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3031-3041.DOI: 10.11949/0438-1157.20191588
收稿日期:
2019-12-27
修回日期:
2020-04-06
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
卢春喜
作者简介:
李建涛(1993—),男,博士研究生,基金资助:
Jiantao LI(),Xiuying YAO,Lu LIU,Chunxi LU()
Received:
2019-12-27
Revised:
2020-04-06
Online:
2020-07-05
Published:
2020-07-05
Contact:
Chunxi LU
摘要:
外取热器是维持催化裂化反应-再生系统热平衡和保持装置平稳运行的关键设备之一。外取热器的优化设计和合理调控,要求深入理解外取热器内的流动特性、换热特性及两者之间关系。在一套大型冷模热态实验装置上,分别考察了表观气速、颗粒质量流率对换热管附近的局部固含率和气泡频率、床层与换热管间传热系数的影响。结果表明:增加表观气速可以降低局部固含率、增加局部气泡频率、强化床层与换热管间换热;随着颗粒质量流率增加,局部固含率和局部气泡频率均增加;在较低表观气速下,增加颗粒质量流率不利于换热,而在较高表观气速下,传热系数随颗粒质量流率逐渐增加。不同流型下,气固流动特性对换热特性的影响不同。在鼓泡床流型下,过高的局部固含率不利于颗粒在换热表面的更新,增加换热管附近的局部气泡频率可以明显强化换热;而在湍流床流型下,换热管附近的局部固含率和气泡频率的增加,均使传热系数逐渐增大。建立了针对不同流型的换热经验关联式,预测值与实验值的平均相对偏差分别为6.9%和1.3%。
中图分类号:
李建涛, 姚秀颖, 刘璐, 卢春喜. 气固流化床外取热器内流动和换热特性分析[J]. 化工学报, 2020, 71(7): 3031-3041.
Jiantao LI, Xiuying YAO, Lu LIU, Chunxi LU. Analysis of flow and heat transfer characteristics in external heat extractor of gas-solid fluidized bed[J]. CIESC Journal, 2020, 71(7): 3031-3041.
1 | 卢春喜, 陈英, 李会鹏, 等. 炼油过程及设备[M]. 北京: 中国石化出版社, 2014: 85-89. |
Lu C X, Chen Y, Li H P, et al. Refining Processes and Equipment[M]. Beijing: China Petrochemical Press, 2014: 85-89. | |
2 | 刘梦溪, 卢春喜, 时铭显. 催化裂化后反应系统快分的研究进展[J]. 化工学报, 2016, 67(8): 3134-3145. |
Liu M X, Lu C X, Shi M X. Advances in quick separators of post-riser system in FRCC unit[J]. CIESC Journal, 2016, 67(8): 3134-3145. | |
3 | 刘英杰, 杨基和, 蓝兴英, 等. RFCC化学汽提过程的模拟研究[J]. 化工学报, 2016, 67(8): 3245-3250. |
Liu Y J, Yang J H, Lan X Y, et al. Numerical study on RFCC chemical stripping process [J]. CIESC Journal, 2016, 67(8): 3245-3250. | |
4 | 王飙, 徐春明, 高金森. 我国重质油加工方案的分析[J]. 当代化工, 2003, 32(2): 115-117. |
Wang B, Xu C M, Gao J S. Analysis of heavy oil processing in China[J]. Contemporary Chemical Industry, 2003, 32(2): 115-117. | |
5 | 赖周平. 重油催化裂化过程中的取热技术[J]. 炼油技术与工程, 1995, 25(6): 44-48. |
Lai Z P. Technology of heat extraction in heavy oil catalytic cracking[J]. Refining Technology and Engineering, 1995, 25(6): 44-48. | |
6 | 王想平. RFCC装置外取热器芯子损坏原因探讨[J]. 石化技术与应用, 2001, 19(3): 161-163. |
Wang X P. Damage reasons for tube bundle of outside heat remover in heavy oil catalytic cracking unit[J]. Petrochemical Technology &Application, 2001, 19(3): 161-163. | |
7 | 姚秀颖, 卢春喜. 催化裂化再生催化剂取热技术研究进展[J]. 石油学报(石油加工), 2018, 34(2): 217-228. |
Yao X Y, Lu C X. Advances in regenerated catalyst cooler of FCC[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(2): 217-228. | |
8 | 王春峰, 万德斌, 王宁, 等. 催化外取热器换热分析[J]. 当代化工, 2010, 39(5): 611-613. |
Wang C F, Wan D B, Wang N, et al. Heat transfer analysis of external catalyst cooler in FCC[J]. Contemporary Chemical Industry, 2010, 39(5): 611-613. | |
9 | 李莉. 气控式外循环外取热技术的工业应用[J]. 炼油设计, 1999, 29(9): 11-17. |
Li L. Commercial application of pneumatic controlled external catalyst coolers[J]. Petroleum Refinery Engineering, 1999, 29(9): 11-17. | |
10 | 张荫荣, 亓玉台, 李淑勋, 等. 重油催化裂化取热技术及其进展[J]. 抚顺石油学院学报, 2002, 22(3): 22-26. |
Zhang Y R, Qi Y T, Li S X, et al. The technology of catalyst cooler in RFCC and its progress[J]. Journal of Fushun Petroleum Institute, 2002, 22(3): 22-26. | |
11 | 孙富伟. 催化裂化外取热器开发与研究进展[J]. 现代化工, 2015, 35(6): 29-33. |
Sun F W. Advances in research and development of external catalyst cooler of FCC[J]. Modern Chemical Industry, 2015, 35(6): 29-33. | |
12 | 张荣克, 张蓉生. FCC装置下流式密相催化剂强化传热外取热器的开发和应用[J]. 石油炼制与化工, 2006, 37(4): 50-54. |
Zhang R K, Zhang R S. Development and application of a dense phase FCC catalyst cooler with enhanced heat-transfer capability[J]. Petroleum Processing and Petrochemicals, 2006, 37(4): 50-54. | |
13 | Yusuf R, Halvorsen B, Melaaen M. An experimental and computational study of wall to bed heat transfer in a bubbling gas-solid fluidized bed[J]. International Journal of Multiphase Flow, 2012, 42: 9-23. |
14 | Chen J, Grace J, Golriz M. Heat transfer in fluidized beds: design methods[J]. Powder Technology, 2005, 150(2): 123-132. |
15 | Hilal N, Hastaoglu M. The relationship between particle properties and fluidizing velocity during fluidized bed heat transfer[J]. Advanced Powder Technology, 2004, 15(5): 583-594. |
16 | Abid B, Ali J, Alzubaidi A. Heat transfer in gas-solid fluidized bed with various heater inclinations[J]. International Journal of Heat & Mass Transfer, 2011, 54(9): 2228-2233. |
17 | Hofer G, Schony G, Fuchs J, et al. Investigating wall-to-bed heat transfer in view of a continuous temperature swing adsorption process[J]. Fuel Processing Technology, 2018, 169: 157-169. |
18 | Kim S W, Kim S D. Heat transfer characteristics in a pressurized fluidized bed of fine particles with immersed horizontal tube bundle[J]. International Journal of Heat and Mass Transfer, 2013, 64: 269-277. |
19 | Lechner S, Merzsch M, Krautz H. Heat-transfer from horizontal tube bundles into fluidized beds with Geldart A lignite particles[J]. Powder Technology, 2014, 253: 14-21. |
20 | Yao X, Sun F, Zhang Y, et al. Experimental validation of a new heat transfer intensification method for FCC external catalyst coolers[J]. Chemical Engineering and Processing: Process Intensification, 2014, 75: 19-30. |
21 | Stefanova A, Bi H, Lim C, et al. Heat transfer from immersed vertical tube in a fluidized bed of group A particles near the transition to the turbulent fluidization flow regime[J]. International Journal of Heat and Mass Transfer, 2008, 51(7/8): 2020-2028. |
22 | Yao X, Han X, Zhang Y, et al. Investigation of the heat transfer intensification mechanism for a new fluidized catalyst cooler[J]. AIChE Journal, 2015, 61(8): 2415-2427. |
23 | Mickley H, Fairbanks D. Mechanism of heat transfer to fluidized beds[J]. AIChE Journal, 1955, 1(3): 374-384. |
24 | Yao X, Han X, Zhang Y, et al. Systematic study on heat transfer and surface hydrodynamics of a vertical heat tube in a fluidized bed of FCC particles[J]. AIChE Journal, 2014, 61(1): 68-83. |
25 | Burki V, Hirschberg B, Tuzla K, et al. Thermal development for heat transfer in circulating fluidized beds[C]// AIChE Annual Meeting. St. Louis, MO, 1993. |
26 | Cai P, Jin Y, Yu Z Q, et al. Mechanism of flow regime transition from bubbling to turbulent fluidization[J]. AIChE Journal, 1990, 36(6): 955-956. |
27 | Cai P, Jin Y, Yu Z Q, et al. Mechanistic model for onset velocity prediction for regime transition from bubbling to turbulent fluidization[J]. Industrial & Engineering Chemistry Research, 2002, 31(2): 632-635. |
28 | 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2007: 170-171. |
Guo M S, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2007: 170-171. | |
29 | 梁咏诗. 催化剂汽提器气固流动不均匀性的实验与数值模拟[D]. 北京: 中国石油大学(北京), 2017. |
Liang Y S. Experimental study and numerical simulation on hydrodynamic heterogeneity in fluidized catalyst strippers[D]. Beijing: China University of Petroleum, 2017. | |
30 | Niu L, Huang Y H, Chu Z M, et al. Identification of mesoscale flow in a bubbling and turbulent gas-solid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8456-8471. |
31 | Geldart D. Expansion of gas fluidized beds[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5802-5809. |
32 | Sau D C, Mohanty S, Biswal K C. Experimental studies and empirical models for the prediction of bed expansion in gas-solid tapered fluidized beds[J]. Chemical Engineering and Processing, 2010, 49(4): 418-424. |
33 | Wang J, Hoef M A, Kuipers J A. Coarse grid simulation of bed expansion characteristics of industrial-scale gas-solid bubbling fluidized beds[J]. Chemical Engineering Science, 2010, 65(6): 2125-2131. |
34 | Medrano J, Tasdemir M, Gallucci F, et al. On the internal solids circulation rates in freely-bubbling gas-solid fluidized beds[J]. Chemical Engineering Science, 2017, 172: 395-406. |
35 | Oke O, Lettieri P, Salatino P, et al. Numerical simulations of lateral solid mixing in gas-fluidized beds[J]. Chemical Engineering Science, 2014, 120: 117-129. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 336
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 543
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||