化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1322-1332.DOI: 10.11949/0438-1157.20200815
收稿日期:
2020-06-22
修回日期:
2020-09-04
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
田茂诚
作者简介:
王长亮(1994—),男,博士研究生,基金资助:
WANG Changliang(),TIAN Maocheng()
Received:
2020-06-22
Revised:
2020-09-04
Online:
2021-03-05
Published:
2021-03-05
Contact:
TIAN Maocheng
摘要:
实验研究了圆形微小通道内液-液两相流的流动和换热特性。选用去离子水为分散相,高黏度二甲基硅油为连续相。通过处理高速摄像所拍摄的可视化图像,总结了液-液两相流流型和液滴的长度/形状特征。并在此基础上考察了低Reynolds数下液-液弹状流对微小通道的换热作用。结果表明,平均Nusselt数随着Reynolds数的增加而增加,且油水比越大传热系数增加幅度越明显。Nu随着含水率的增加而降低。虽然含水率增加会使两相平均热容量提高,但在低Reynolds数下,这种提高被其长液滴内较弱的循环强度所抵消。选用三种不同形式接头在相同混合速度和含水率的情况下生成不同长度的液滴,发现短液滴更有利于换热。相同工况下,液滴长度的优化可以使整体传热系数提高近26%。
中图分类号:
王长亮, 田茂诚. 微小通道内低Reynolds数液-液两相流动与换热特性实验研究[J]. 化工学报, 2021, 72(3): 1322-1332.
WANG Changliang, TIAN Maocheng. Experimental research on low Reynolds number liquid-liquid two-phase flow and heat transfer characteristics in micro channels[J]. CIESC Journal, 2021, 72(3): 1322-1332.
工质 | 动力黏度/(mPa·s) | 密度/ (kg/m3) | 比热容/ (kJ/(kg·K)) | 热导率/ (W/(m·K)) | Prandtl数 |
---|---|---|---|---|---|
去离子水 | 0.89 | 998.2 | 4.179 | 0.609 | 6.22 |
二甲基硅油 | 103.4 | 963 | 1.5348 | 0.177 | 896.6 |
表1 工质物性参数
Table 1 Physical parameters
工质 | 动力黏度/(mPa·s) | 密度/ (kg/m3) | 比热容/ (kJ/(kg·K)) | 热导率/ (W/(m·K)) | Prandtl数 |
---|---|---|---|---|---|
去离子水 | 0.89 | 998.2 | 4.179 | 0.609 | 6.22 |
二甲基硅油 | 103.4 | 963 | 1.5348 | 0.177 | 896.6 |
文献 | 预测关联式 | 通道类型 |
---|---|---|
[ | 矩形通道 | |
[ | 矩形通道 | |
[ | 圆形通道 | |
[ | 矩形通道 |
表2 液-液两相体系中液滴长度预测公式
Table 2 Empirical correlation for droplet length in liquid-liquid two-phase systems
文献 | 预测关联式 | 通道类型 |
---|---|---|
[ | 矩形通道 | |
[ | 矩形通道 | |
[ | 圆形通道 | |
[ | 矩形通道 |
1 | Qian D, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chem. Eng. Sci., 2006, 61(23): 7609-7625. |
2 | Yeung K L, Zhang X, Lau W N, et al. Experiments and modeling of membrane microreactors[J]. Catalysis Today, 2005, 110(1/2): 26-37. |
3 | Lang P, Hill M, Krossing I, et al. Multiphase minireactor system for direct fluorination of ethylene carbonate[J]. Chem. Eng. J., 2012, 179: 330-337. |
4 | 付涛涛, 朱春英, 王东继, 等. 微通道内气液传质特性[J]. 化工进展, 2011, 30(S2): 95-98. |
Fu T T, Zhu C Y, Wang D J, et al. Mass transfer characteristics for gas-liquid two-phase flow in microchannels[J]. Chemical Industry and Engineering Progress, 2011, 30(S2): 95-98. | |
5 | Gupta R, Fletcher D F, Haynes B S. CFD modelling of flow and heat transfer in the Taylor flow regime[J]. Chem. Eng. Sci., 2010, 65(6): 2094-2107. |
6 | 李婷, 许松林. 微通道内液-液泰勒流传热的计算流体力学模拟[J]. 化工进展, 2017, 36(6): 2078-2085. |
Li T, Xu S L. CFD simulations of heat transfer of liquid-liquid Taylor flow in microchannels[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2078-2085. | |
7 | Khan S A, Duraiswamy S. Microfluidic emulsions with dynamic compound drops[J]. Lab on a Chip, 2009, 9(13): 1840-1842. |
8 | Verma R K, Ghosh S. Effect of phase properties on liquid-liquid two-phase flow patterns and pressure drop in serpentine mini geometry[J]. Chemical Engineering Journal, 2020, 397: 125443. |
9 | 周灏, 朱春英, 付涛涛, 等. 三维孔喉结构微通道内液滴的破裂行为研究[J]. 化工学报, 2019, 70(10): 3924-3931. |
Zhou H, Zhu C Y, Fu T T, et al. Study on droplet breakup behaviors in 3-D pore-throat microchannel[J]. CIESC Journal, 2019, 70(10): 3924-3931. | |
10 | 梁倩卿, 马学虎, 王凯, 等. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281. |
Liang Q Q, Ma X H, Wang K, et al. Gas-liquid Taylor flow pressure drop in rectangular meandering microchannel[J]. CIESC Journal, 2019, 70(4): 1272-1281. | |
11 | 魏丽娟, 朱春英, 付涛涛, 等. T型微通道内液滴尺寸的实验测定与关联[J]. 化工学报, 2013, 64(2): 517-523. |
Wei L J, Zhu C Y, Fu T T, et al. Experimental measurement and correlation of droplet size in T-junction microchannels[J]. CIESC Journal, 2013, 64(2): 517-523. | |
12 | Svetlov S D, Abiev R S. Formation mechanisms and lengths of the bubbles and liquid slugs in a coaxial-spherical micro mixer in Taylor flow regime[J]. Chem. Eng. J., 2018, 354: 269-284. |
13 | 张井志, 李蔚. 毛细管内气液Taylor流动的气泡及阻力特性[J]. 化工学报, 2015, 66(3): 942-948. |
Zhang J Z, Li W. Bubble and frictional characteristics of gas-liquid Taylor flow in capillary tube[J]. CIESC Journal, 2015, 66(3): 942-948. | |
14 | Dai Z, Guo Z, Fletcher D F, et al. Taylor flow heat transfer in microchannels—unification of liquid-liquid and gas-liquid results [J]. Chem. Eng. Sci., 2015, 138: 140-152. |
15 | Abdollahi A, Norris S E, Sharma R N. Fluid flow and heat transfer of liquid-liquid Taylor flow in square microchannels[J]. Appl. Therm. Eng., 2020, 172: 115123. |
16 | Leung S S Y, Liu Y, Fletcher D F, et al. Heat transfer in well-characterised Taylor flow[J]. Chem. Eng. Sci., 2010, 65(24): 6379-6388. |
17 | Majumder A, Mehta B, Khandekar S. Local Nusselt number enhancement during gas-liquid Taylor bubble flow in a square mini-channel: an experimental study[J]. Int. J. Therm. Sci., 2013, 66: 8-18. |
18 | Bandara T, Nguyen N T, Rosengarten G. Slug flow heat transfer without phase change in microchannels: a review[J]. Chem. Eng. Sci., 2015, 126: 283-295. |
19 | Mac Giolla Eain M, Egan V, Punch J. Local Nusselt number enhancements in liquid-liquid Taylor flows[J]. Int. J. Heat Mass Transf., 2015, 80: 85-97. |
20 | Che Z, Wong T N, Nguyen N T, et al. Three dimensional features of convective heat transfer in droplet-based microchannel heat sinks[J]. Int. J. Heat Mass Transf., 2015, 86: 455-464. |
21 | Jeong W J, Kim J Y, Choo J, et al. Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems[J]. Langmuir, 2005, 21(9): 3738-3741. |
22 | Zhao Y, Chen G, Yuan Q. Liquid-liquid two-phase mass transfer in the T-junction microchannels[J]. AIChE Journal, 2007, 53(12): 3042-3053. |
23 | Burns J R, Ramshaw C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries[J]. Lab on a Chip, 2001, 1(1): 10-15. |
24 | Sobieszuk P, Cygański P, Pohorecki R. Bubble lengths in the gas-liquid Taylor flow in microchannels[J]. Chemical Engineering Research and Design, 2010, 88(3): 263-269. |
25 | Cao Z, Wu Z, Sundén B. Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels[J]. Chem. Eng. J., 2018, 344: 604-615. |
26 | 王长亮. T型微通道内气液多相体系模拟与实验研究[D]. 郑州: 郑州大学, 2018. |
Wang C L. Numerical simulation and experimental study of gas-liquid multiphase system in T-shaped microchannels[D]. Zhengzhou: Zhengzhou University, 2018. | |
27 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
28 | Li Q, Angeli P. Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels[J]. Chem. Eng. J., 2017, 328: 717-736. |
29 | Tsaoulidis D, Angeli P. Effect of channel size on liquid-liquid plug flow in small channels[J]. AIChE Journal, 2016, 62(1): 315-324. |
30 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
31 | Chen Y, Kulenovic R, Mertz R. Numerical study on the formation of Taylor bubbles in capillary tubes[J]. Int. J. Therm. Sci., 2009, 48(2): 234-242. |
32 | Taha T, Cui Z F. Hydrodynamics of slug flow inside capillaries[J]. Chem. Eng. Sci., 2004, 59(6): 1181-1190. |
33 | Gupta R, Leung S S Y, Manica R, et al. Hydrodynamics of liquid-liquid Taylor flow in microchannels[J]. Chem. Eng. Sci., 2013, 92: 180-189. |
34 | Asthana A, Zinovik I, Weinmueller C, et al. Significant Nusselt number increase in microchannels with a segmented flow of two immiscible liquids: an experimental study[J]. Int. J. Heat Mass Transf., 2011, 54(7/8): 1456-1464. |
35 | Suwankamnerd P, Wongwises S. An experimental study of two-phase air-water flow and heat transfer characteristics of segmented flow in a microchannel[J]. Exp. Therm. Fluid Sci., 2015, 62: 29-39. |
36 | Xu B, Wong T N, Zhang D, et al. Numerical investigation on the heat transfer characteristics of liquid-liquid plug-train in microchannels[J]. Chemical Engineering and Processing - Process Intensification, 2019, 143: 107592. |
37 | Bandara T, Chandrashekar M, Karwa N, et al. Liquid-liquid slug flow for enhanced heat transfer[C]//Proceedings of the 10th Australasian Heat and Mass Transfer Conference (AHMT2016). Brisbane, Australia, 2016: 43-49. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||