化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4177-4183.DOI: 10.11949/0438-1157.20201920
收稿日期:
2020-12-20
修回日期:
2021-04-09
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
尹红
作者简介:
袁慎峰(1977—),男,博士,副教授,
Shenfeng YUAN(),Zhouna WAN,Zhirong CHEN,Hong YIN(
)
Received:
2020-12-20
Revised:
2021-04-09
Online:
2021-08-05
Published:
2021-08-05
Contact:
Hong YIN
摘要:
醛能与亚硫酸氢钠发生快速的可逆亲核加成反应,该反应可用于去除混合物中的醛。目前醛类加成的动力学研究多集中于低碳醛或芳香醛,缺少高碳脂肪醛的相关数据,且常用的分析方法如碘量法和紫外分光光度法应用局限性大。以庚醛为研究对象,利用在线红外光谱仪,实时监测了283.15~298.15 K温度下庚醛与亚硫酸氢钠的加成反应过程,通过对实验数据的计算与拟合,求得不同温度的反应速率常数和平衡常数,确定了反应的动力学方程,为庚醛的分离应用提供理论基础。结果表明,随着反应温度升高,庚醛反应速率增大,而平衡转化率减小。庚醛与亚硫酸氢钠的加成反应为放热过程,反应热为-60.01 kJ?mol-1。正反应的活化能为34.68 kJ?mol-1,指前因子为1.369×107 L?mol-1?min-1,逆反应的活化能为94.69 kJ?mol-1,指前因子为2.500×1015 min-1。
中图分类号:
袁慎峰, 万周娜, 陈志荣, 尹红. 庚醛与亚硫酸氢钠加成反应动力学研究[J]. 化工学报, 2021, 72(8): 4177-4183.
Shenfeng YUAN, Zhouna WAN, Zhirong CHEN, Hong YIN. Study on addition reaction kinetics of heptaldehyde and sodium bisulfite[J]. CIESC Journal, 2021, 72(8): 4177-4183.
T/K | (L·mol-1·min-1) | k-1 / min-1 | Kh | k1/ (L·mol-1·min-1) | K1/ (L·mol-1) |
---|---|---|---|---|---|
283.15 | 4.100 | 8.926×10-3 | 0.3564 | 5.561 | 623.1 |
288.15 | 5.089 | 1.631×10-2 | 0.3031 | 6.631 | 406.5 |
293.15 | 7.693 | 3.142×10-2 | 0.2748 | 9.807 | 312.1 |
298.15 | 9.051 | 6.812×10-2 | 0.2283 | 11.12 | 163.2 |
表1 速率常数和平衡常数
Table 1 Rate constants and equilibrium constants
T/K | (L·mol-1·min-1) | k-1 / min-1 | Kh | k1/ (L·mol-1·min-1) | K1/ (L·mol-1) |
---|---|---|---|---|---|
283.15 | 4.100 | 8.926×10-3 | 0.3564 | 5.561 | 623.1 |
288.15 | 5.089 | 1.631×10-2 | 0.3031 | 6.631 | 406.5 |
293.15 | 7.693 | 3.142×10-2 | 0.2748 | 9.807 | 312.1 |
298.15 | 9.051 | 6.812×10-2 | 0.2283 | 11.12 | 163.2 |
羰基化合物 | ?H /(kJ?mol-1) | Ea1 /(kJ?mol-1) | 文献 |
---|---|---|---|
甲醛 | -81.4 | 24.9 | [ |
乙醛 | -63.3 | 27.1 | [ |
庚醛 | -60.01 | 34.68 | 本研究 |
苯甲醛 | -51.3 | 38.7 | [ |
丙酮 | -41.3 | — | [ |
表2 羰基化合物与亚硫酸氢钠加成反应的反应热与活化能
Table 2 The reaction heat and activation energy of the reaction between carbonyl compound and NaHSO3
羰基化合物 | ?H /(kJ?mol-1) | Ea1 /(kJ?mol-1) | 文献 |
---|---|---|---|
甲醛 | -81.4 | 24.9 | [ |
乙醛 | -63.3 | 27.1 | [ |
庚醛 | -60.01 | 34.68 | 本研究 |
苯甲醛 | -51.3 | 38.7 | [ |
丙酮 | -41.3 | — | [ |
1 | 王恩泽, 夏皖东, 范肖南. 浅谈煤炭液化技术研究现状及发展前景[J]. 煤质技术, 2015, 11(6): 5-8. |
Wang E Z, Xia W D, Fan X N. Discussion on present status and developing prospects of coal liquefaction techniques[J]. Coal Quality Technology, 2015, 11(6): 5-8. | |
2 | 蔡力宏, 梁雪美. 高碳醇的市场应用及煤基费托合成高碳醇的生产工艺[J]. 合成材料老化与应用, 2017, 46(6): 123-127. |
Cai L H, Liang X M. Application of higher alcohol and technology of Fischer-Tropsch higher alcohol[J]. Synthetic Materials Aging and Application, 2017, 46(6): 123-127. | |
3 | Drese J H, Talley A D, Jones C W. Aminosilica materials as adsorbents for the selective removal of aldehydes and ketones from simulated bio-oil[J]. ChemSusChem, 2011, 4(3): 379-385. |
4 | Chan Y H, Loh S K, Chin B L F, et al. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: recent advances and future prospects[J]. Chemical Engineering Journal, 2020, 397: 125406. |
5 | 罗伟昂, 崔建国, 廖正福. 醛的不对称加成反应进展[J]. 化工技术与开发, 2005, 34(3): 21-28. |
Luo W A, Cui J G, Liao Z F. Recent development in the asymmetric addition of aldehydes[J]. Technology & Development of Chemical Industry, 2005, 34(3): 21-28. | |
6 | 仇春高. 环氧乙烷乙二醇装置全流程优化脱醛工艺研究[J]. 山东化工, 2010, 39(7): 38-41. |
Qiu C G. Optimization for the dealdehyde process of EOEG plant[J]. Shandong Chemical Industry, 2010, 39(7): 38-41. | |
7 | 邱明荣. 甲醇羰基化合成醋酸脱醛技术进展[J]. 中国石油和化工标准与质量, 2014, (22): 17. |
Qiu M R. Progress in dealdehyde-acetate synthesis by methanol carbonylation[J]. China Petroleum and Chemical Standard and Quality, 2014, (22): 17. | |
8 | 王志华, 颜剑波, 蒋成君. 反应-萃取去除醛的工艺研究[J]. 浙江化工, 2018, 49(1): 21-23. |
Wang Z H, Yan J B, Jiang C J. Removal of aldehydes by coupling reaction-extration method[J]. Zhejiang Chemical Industry, 2018, 49(1): 21-23. | |
9 | Boucher M M, Furigay M H, Quach P K, et al. Liquid-liquid extraction protocol for the removal of aldehydes and highly reactive ketones from mixtures[J]. Organic Process Research & Development, 2017, 21(9): 1394-1403. |
10 | Furigay M H, Boucher M M, Mizgier N A, et al. Separation of aldehydes and reactive ketones from mixtures using a bisulfite extraction protocol[J]. Journal of Visualized Experiments, 2018, 134: e57639. |
11 | Nomura A, Jones C W. Airborne aldehyde abatement by latex coatings containing amine-functionalized porous silicas[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 263-271. |
12 | Blasi M, Barbe J, Maillard B, et al. New methodology for removing carbonyl compounds from sweet wines[J]. Journal of Agricultural and Food Chemistry, 2007, 55(25): 10382-10387. |
13 | Church A L, Hu M Z, Lee S J, et al. Selective adsorption removal of carbonyl molecular foulants from real fast pyrolysis bio-oils[J]. Biomass & bioenergy, 2020, 136: 105522. |
14 | 陈伦刚, 刘勇, 定明月, 等. Ru催化加氢选择性脱除F-T合成水相中的含氧化合物[J]. 化工学报, 2014, 65(11): 4347-4355. |
Chen L G, Liu Y, Ding M Y, et al. Removal of oxygenates in aqueous phase product of F-T process by catalytic hydrogenation over Ru catalyst[J]. CIESC Jorunal, 2014, 65(11): 4347-4355. | |
15 | 王安伟. 甲酸供氢的钯催化醛还原为醇的研究[D]. 长沙: 湖南大学, 2013. |
Wang A W. Pd-catalyzed reduction of aldehydes to alcohols using formic acid as the hydrogen donor[D]. Changsha: Hunan University, 2013. | |
16 | Stewart T D, Donnally L H. The aldehyde bisulfite compounds(Ⅰ): The rate of dissociation of benzaldehyde sodium bisulfite as measured by its first order reaction with iodine[J]. Journal of the American Chemical Society, 1932, 54(6): 2333-2340. |
17 | Blackadder D A, Hinshelwood C. The kinetics of the decomposition of the addition compounds formed by sodium bisulphite and a series of aldehydes and ketones. Part I[J]. Journal of the Chemical Society, 1958, (8): 2720-2727. |
18 | Green L R, Hine J. The pH independent equilibrium-constants and rate constants for formation of bisulfite addition compound of isobutyraldehyde in water[J]. Journal of Organic Chemistry, 1974, 39(26): 3896-3901. |
19 | Betterton E A, Erel Y, Hoffmann M R. Aldehyde-bisulfite adducts:prediction of some of their thermodynamic and kinetic properties[J]. Environmental Science & Technology, 1988, 22(1): 92-99. |
20 | Olson T M, Hoffmann M R. Hydroxyalkylsulfonate formation: its role as a S(Ⅳ) reservoir in atmospheric water droplets[J]. Atmospheric Environment, 1989, 23(5): 985-997. |
21 | Olson T M, Boyce S D, Hoffmann M R. Kinetics, thermodynamics, and mechanism of the formation of benzaldehyde-S(Ⅳ) adducts[J]. Journal of Physical Chemistry, 1986, 90(11): 2482-2488. |
22 | Sousa J A, Margerum J D. Equilibrium constant of benzaldehyde sodium bisulfite[J]. Journal of the American Chemical Society, 1960, 82(12): 3013-3016. |
23 | Carter C F, Lange H, Ley S V, et al. ReactIR flow cell: a new analytical tool for continuous flow chemical processing[J]. Organic Process Research & Development, 2010, 14(2): 393-404. |
24 | Willcox D, Nouch R, Kingsbury A, et al. Kinetic analysis of copper(Ⅰ)/feringa-phosphoramidite catalyzed AIEt(3) 1,4-addition to cyclohex-2-en-1-one[J]. ACS Catalysis, 2017, 7(10): 6901-6908. |
25 | 王永胜, 王涛, 丛湧, 等. ReactIR15对线粒体靶向抗氧剂SKQ1合成的在线监测[J]. 兰州理工大学学报, 2017, 43(6): 74-77. |
Wang Y S, Wang T, Cong Y, et al. Online monitoring of mitochondria targeted antioxidant SKQ1 synthesis with ReactIR15[J]. Journal of Lanzhou University of Technology, 2017, 43(6): 74-77. | |
26 | Hosoya M, Nishijima S, Kurose N. Management of the heat of reaction under continuous flow conditions using in-line monitoring technologies[J]. Organic Process Research & Development, 2020, 24(6): 1095-1103. |
27 | 张艳华. 原位红外技术在动态分析中的应用[J]. 印制电路信息, 2018, 26(1): 20-25. |
Zhang Y H. Application of in situ infrared technology in dynamic analysis[J]. Printed Circuit Information, 2018, 26(1): 20-25. | |
28 | Rao K S, St-Jean F, Kumar A. Quantitation of a ketone enolization and a vinyl sulfonate stereoisomer formation using inline IR spectroscopy and modeling[J]. Organic Process Research & Development, 2019, 23 (5): 945-951. |
29 | Deng H, Shen Z, Li L, et al. Real-time monitoring of ring-opening polymerization of tetrahydrofuran via in situ Fourier transform infrared spectroscopy[J]. Journal of Applied Polymer Science, 2014, 131(15): 338-347. |
30 | Jencks W P. Mechanism and catalysis of simple carbonyl group reactions[J]. Progress in Physical Organic Chemistry, 1964, 2: 63-128. |
31 | Bloch C, Rumpf P. A kinetic method for spectrophotometric determination of the degree of hydration of aldehydes[J]. Compt. Rend., 1953, 237: 619-21. |
32 | Deister U, Neeb R, Helas G, et al. Temperature dependence of the equilibrium CH2(OH)2 + HSO3- = CH2(OH)SO3-+ H2O in aqueous solution[J]. The Journal of Physical Chemistry, 1986, 90(14): 3213-3217. |
33 | Boyce S D, Hoffmann M R. Kinetics and mechanism of the formation of hydroxymethanesulfonic acid at low pH[J]. The Journal of Physical Chemistry, 1984, 88(20): 4740-4746. |
34 | Benkelberg H J, Hamm S, Warneck P. Henry's law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite[J]. Journal of Atmospheric Chemistry, 1995, 20(1): 17-34. |
35 | Schecker H G, Schulz G. Hydration kinetics of formaldehyde in aqueous solution[J]. Zeitschrift Fur Physikalische Chemie-Frankfurt, 1969, 65(1/2/3/4): 221-224. |
36 | Edwards J O, Ibnerasa K M, Choi E I, et al. Kinetic deuterium isotope effect in the nitrosation of aniline. The deuterium isotope effect on three equilibrium constants[J]. Journal of Physical Chemistry, 1962, 66(6): 1212-1213. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[5] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[9] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[10] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[11] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[12] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[15] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1089
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||