化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4616-4628.DOI: 10.11949/0438-1157.20201949
收稿日期:
2021-01-03
修回日期:
2021-05-13
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
赵兰萍
作者简介:
赵兰萍(1967—),女,博士,副教授, 基金资助:
Lanping ZHAO1(),Bentao GUO1,2,Zhigang YANG2
Received:
2021-01-03
Revised:
2021-05-13
Online:
2021-09-05
Published:
2021-09-05
Contact:
Lanping ZHAO
摘要:
以三换热器汽车热泵系统中的内部冷凝器为研究对象,实验研究了迎风面积与厚度相等时单层二流程与双层四流程的性能差别,发现双层冷凝器比单层的换热能力最大可增加7.9%,但压降增加了177.6%。建立了双层四流程冷凝器一维仿真模型,研究了当制冷剂为R134a与R1234yf时其在不同结构下的换热量与制冷剂侧压降。结果表明:不同流程排布的换热量差别较小,排布为11-12-12-11时,各个工况的R134a侧压降都显著减小;固定第二层厚度,第一层厚度从10 mm到20 mm,高风速工况下R134a的换热量最大增加10.4%,压降最大可减小63.6%;固定总厚度,采用不同的两层厚度组合,换热量变化较小,存在性能较优的两层厚度组合16 mm-8 mm与14 mm-10 mm;制冷剂为R1234yf时换热量和压降分别比R134a降低了8.02%和47.0%。
中图分类号:
赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628.
Lanping ZHAO, Bentao GUO, Zhigang YANG. Effect of structure on the performance of inner condenser for heat pump of EV[J]. CIESC Journal, 2021, 72(9): 4616-4628.
项目 | 关联式 |
---|---|
空气侧传热及压降[ | |
制冷剂侧传热系数(单相)[ | |
制冷剂侧传热系数(两相)[ | |
制冷剂压降(单相)[ | Re<2000, |
Re>2000, | |
制冷剂压降(两相)[ | |
空泡系数[ | |
突扩压降(单相)[ | |
突缩压降(单相)[ | |
突缩压降(双相)[ | |
表1 关联式选择
Table 1 Correlations of the model
项目 | 关联式 |
---|---|
空气侧传热及压降[ | |
制冷剂侧传热系数(单相)[ | |
制冷剂侧传热系数(两相)[ | |
制冷剂压降(单相)[ | Re<2000, |
Re>2000, | |
制冷剂压降(两相)[ | |
空泡系数[ | |
突扩压降(单相)[ | |
突缩压降(单相)[ | |
突缩压降(双相)[ | |
参数 | 单层 | 双层 |
---|---|---|
长×宽×厚/mm×mm×mm | 215×226×32 | 215×226×32 |
扁管宽度/mm | 25.4 | 12 |
微通道数 | 26 | 12 |
微通道宽×高/mm×mm | 0.7×0.6 | 0.7×0.6 |
扁管数 | 23 | 46 |
流程分布 | 15-8 | 12-11-11-12 |
百叶窗间距/mm | 1.1 | 1.1 |
百叶窗高度/mm | 6.7 | 6.7 |
百叶窗角度/(°) | 27 | 27 |
表2 冷凝器结构参数
Table 2 Structural parameters of the condensers
参数 | 单层 | 双层 |
---|---|---|
长×宽×厚/mm×mm×mm | 215×226×32 | 215×226×32 |
扁管宽度/mm | 25.4 | 12 |
微通道数 | 26 | 12 |
微通道宽×高/mm×mm | 0.7×0.6 | 0.7×0.6 |
扁管数 | 23 | 46 |
流程分布 | 15-8 | 12-11-11-12 |
百叶窗间距/mm | 1.1 | 1.1 |
百叶窗高度/mm | 6.7 | 6.7 |
百叶窗角度/(°) | 27 | 27 |
测量项目 | 仪表设备 | 仪表精度 | 分辨率 |
---|---|---|---|
制冷剂温度 | 热电偶 | ±0.5℃ | <0.2℃ |
制冷剂压力 | 压力传感器 | 0.1% | <30 Pa |
空气温度 | PT100 | ±0.2℃ | <0.1℃ |
空气压差 | 微压差变送器 | >0.25% | <10 Pa |
大气压力 | 绝对压力变送器 | 0.1% | <30 Pa |
表3 仪表参数
Table 3 Parameters of measuring instruments
测量项目 | 仪表设备 | 仪表精度 | 分辨率 |
---|---|---|---|
制冷剂温度 | 热电偶 | ±0.5℃ | <0.2℃ |
制冷剂压力 | 压力传感器 | 0.1% | <30 Pa |
空气温度 | PT100 | ±0.2℃ | <0.1℃ |
空气压差 | 微压差变送器 | >0.25% | <10 Pa |
大气压力 | 绝对压力变送器 | 0.1% | <30 Pa |
编号 | 扁管排布 |
---|---|
1 | 9-14-14-9 |
2 | 10-13-13-10 |
3 | 11-12-12-11 |
4 | 12-11-11-12 |
5 | 13-10-10-13 |
6 | 14-9-9-14 |
表4 各流程的扁管数组合情况
Table 4 Pass arrangement
编号 | 扁管排布 |
---|---|
1 | 9-14-14-9 |
2 | 10-13-13-10 |
3 | 11-12-12-11 |
4 | 12-11-11-12 |
5 | 13-10-10-13 |
6 | 14-9-9-14 |
性质 | R1234yf | R134a |
---|---|---|
液体动力黏度/(μPa·s) | 113.59 | 141.77 |
液体运动黏度/(cm2/s) | 0.0011469 | 0.0012861 |
蒸发潜热/(kJ/kg) | 122.13 | 151.81 |
液体密度/(kg/m3) | 990.38 | 1102.3 |
液体热导率/(mW/(m·K)) | 56.130 | 70.427 |
表5 R1234yf与R134a饱和状态物理性质对比(50℃)
Table 5 Physical properties of the saturated state of R1234yf and R134a
性质 | R1234yf | R134a |
---|---|---|
液体动力黏度/(μPa·s) | 113.59 | 141.77 |
液体运动黏度/(cm2/s) | 0.0011469 | 0.0012861 |
蒸发潜热/(kJ/kg) | 122.13 | 151.81 |
液体密度/(kg/m3) | 990.38 | 1102.3 |
液体热导率/(mW/(m·K)) | 56.130 | 70.427 |
1 | 张皓, 赵家威, 施骏业, 等. 电动汽车热泵空调系统采暖性能的试验研究[J]. 制冷技术, 2017, 37(3): 39-42. |
Zhang H, Zhao J W, Shi J Y, et al. Experimental study on heating performance of heat pump air conditioning system for electric vehicles[J]. Chinese Journal of Refrigeration Technology, 2017, 37(3): 39-42. | |
2 | 赵宇, 嵇天炜, 瞿晓华, 等. 电动汽车热泵空调系统综述[J]. 制冷与空调, 2020, 20(7): 72-81. |
Zhao Y, Ji T W, Qu X H, et al. Review of heat pump system in electric vehicles[J]. Refrigeration and Air-Conditioning, 2020, 20(7): 72-81. | |
3 | Kim K Y, Kim S C, Kim M S. Experimental studies on the heating performance of the PTC heater and heat pump combined system in fuel cells and electric vehicles[J]. International Journal of Automotive Technology, 2012, 13(6): 971-977. |
4 | Feng L L, Hrnjak P. Experimental study of an air conditioning-heat pump system for electric vehicles[R]//SAE Technical Paper Series. SAE International, 2016. |
5 | Higuchi Y, Kobayashi H, Shan Z W, et al. Efficient heat pump system for PHEV/BEV[R]//SAE Technical Paper Series. SAE International, 2017. |
6 | Zhang Z Q, Wang D D, Zhang C Q, et al. Electric vehicle range extension strategies based on improved AC system in cold climate—a review[J]. International Journal of Refrigeration, 2018, 88: 141-150. |
7 | 韦伟. 车用热泵小管径换热器开发与性能研究[D]. 上海: 上海交通大学, 2013. |
Wei W. Design and performance study of the small diameter tube-and-fin heat exchanger for automotive heat pump system[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
8 | 严瑞东. 基于部件优化的电动汽车热泵系统性能提升研究[D]. 上海: 上海交通大学, 2015. |
Yan R D. Development of heat pump system for electrical cars[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
9 | 王颖, 施骏业, 陈江平, 等. 采用三换热器和四通阀的两种车用热泵系统的对比研究[J]. 制冷学报, 2014, 35(1): 71-76. |
Wang Y, Shi J Y, Chen J P, et al. Comparative study of two kinds of automotive air conditioning system with three heat exchangers and four-way valve[J]. Journal of Refrigeration, 2014, 35(1): 71-76. | |
10 | 吴侣柏, 林洲君, 凌强. 一种微通道双层平行流冷凝器: 205957547U[P]. 2017-02-15. |
Wu L B, Lin Z J, Ling Q. Double -deck parallel flow condenser in microchannel: 205957547U[P]. 2017-02-15. | |
11 | 刘明康, 苏林, 方奕栋, 等. 电动汽车热泵空调系统冬季采暖性能实验研究[J]. 制冷学报, 2020, 41(4): 45-51. |
Liu M K, Su L, Fang Y D, et al. Experimental investigation on heating performance of heat pump air-conditioning system for electric vehicle in winter[J]. Journal of Refrigeration, 2020, 41(4): 45-51. | |
12 | 韩欣欣, 薛庆峰, 田长青. 汽车空调用制冷工质[J]. 制冷与空调, 2017, 17(10): 40-47. |
Han X X, Xue Q F, Tian C Q. Refrigerants used in vehicle air-conditioning[J]. Refrigeration and Air-Conditioning, 2017, 17(10): 40-47. | |
13 | 孙西峰, 韩杨. 汽车空调替代制冷剂的比较[J]. 制冷与空调, 2015, 15(5): 60-67. |
Sun X F, Han Y. Comparison of automotive air conditioning alternative refrigerants[J]. Refrigeration and Air-Conditioning, 2015, 15(5): 60-67. | |
14 | 赵宇. R1234yf汽车空调系统性能研究[D]. 上海: 上海交通大学, 2013. |
Zhao Y. Study on the performance of automotive air conditioning systems with R1234yf[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
15 | 刘雨声, 李万勇, 张立, 等. 采用R1234yf制冷剂的汽车超低温强化补气热泵空调性能[J]. 上海交通大学学报, 2020, 54(10): 1108-1116. |
Liu Y S, Li W Y, Zhang L, et al. Performance of automotive ultra-low temperature economized vapor injection heat pump air conditioning using R1234yf refrigerant[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1108-1116. | |
16 | Zou H M, Huang G Y, Shao S Q, et al. Experimental study on heating performance of an R1234yf heat pump system for electric cars[J]. Energy Procedia, 2017, 142: 1015-1021. |
17 | Direk M, Yüksel F. Experimental evaluation of an automotive heat pump system with R1234yf as an alternative to R134a[J]. Arabian Journal for Science and Engineering, 2020, 45(2): 719-728. |
18 | Lee Y, Jung D. A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications[J]. Applied Thermal Engineering, 2012, 35: 240-242. |
19 | Aral M C, Suhermanto M, Hosoz M. Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a[J]. Science and Technology for the Built Environment, 2021, 27(1): 44-60. |
20 | Li W Y, Liu R, Liu Y S, et al. Performance evaluation of R1234yf heat pump system for an electric vehicle in cold climate[J]. International Journal of Refrigeration, 2020, 115: 117-125. |
21 | Del Col D, Torresin D, Cavallini A. Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf[J]. International Journal of Refrigeration, 2010, 33(7): 1307-1318. |
22 | Pabon J J G, Pereira L C, Humia G, et al. Experimental study on the void fraction during two-phase flow of R1234yf in smooth horizontal tubes[J]. International Journal of Refrigeration, 2019, 104: 103-112. |
23 | Illán-Gómez F, López-Belchí A, García-Cascales J R, et al. Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a[J]. International Journal of Refrigeration, 2015, 51: 12-23. |
24 | Nalbandian H, Yang C Y, Chen K T. Effect of channel size and shape on condensation heat transfer of refrigerants HFO-1234yf and HFC-134a in rectangular microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120314. |
25 | 李华松. R1234yf热泵系统冷凝器数值模拟与试验研究[D]. 唐山: 华北理工大学, 2019. |
Li H S. Numerical simulation and experimental study on condenser of R1234yf heat pump system[D]. Tangshan, China: North China University of Science and Technology, 2019. | |
26 | 姚奕, 徐柏兴, 邵翌旻, 等. R1234yf微通道平行流冷凝器仿真模型[J]. 制冷技术, 2013, 33(3): 34-38. |
Yao Y, Xu B X, Shao Y M, et al. Simulation model for micro-channel parallel flow condenser using R1234yf as working fluid[J]. Chinese Journal of Refrigeration Technology, 2013, 33(3): 34-38. | |
27 | Wang T, Gu B, Wu B, et al. Modeling for multi-pass parallel flow condenser with the effect of refrigerant mal-distribution[J]. International Journal of Refrigeration, 2015, 60: 234-246. |
28 | Yin J M, Bullard C W, Hrnjak P S. Single-phase pressure drop measurements in a microchannel heat exchanger[J]. Heat Transfer Engineering, 2002, 23(4): 3-12. |
29 | 董军启. 车辆冷却系统空气侧特性研究[D]. 上海: 上海交通大学, 2008. |
Dong J Q. Research on air side flow and heat transfer character of vehicle cooling systems[D]. Shanghai: Shanghai Jiao Tong University, 2008. | |
30 | Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flows[J]. Int. J. Chem. Eng., 1976,16:359-368. |
31 | Dobson M K, Chato J C. Condensation in smooth horizontal tubes[J]. Journal of Heat Transfer, 1998, 120(1): 193-213. |
32 | Yang C Y, Webb R L. Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins[J]. International Journal of Heat and Mass Transfer, 1996, 39(4): 801-809. |
33 | Idelchik I. Handbook of Hydraulic Resistance [M]. 3rd ed. Boca Raton: CRC Press, 1994. |
34 | Coleman J W, Krause P E. Two phase pressure losses of R134a in microchannel tube headers with large free flow area ratios[J]. Experimental Thermal and Fluid Science, 2004, 28(2/3): 123-130. |
35 | 朱正园, 柳建华, 张良, 等. HFO-1234yf与HFC-134a比较分析[J]. 低温与超导, 2012, 40(4): 66-69. |
Zhu Z Y, Liu J H, Zhang L, et al. Comparative analysis of HFO-1234yf and HFC-134a[J]. Cryogenics & Superconductivity, 2012, 40(4): 66-69. | |
36 | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 292. |
Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019: 292. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[9] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||