化工学报 ›› 2022, Vol. 73 ›› Issue (1): 32-45.doi: 10.11949/0438-1157.20210885
Hengyuan LIU(),Haihui WANG,Jianhong XU(
)
摘要:
氨是化肥、涂料等领域中重要的化工原料,是产量第二高的商用化学品。目前,90%以上的氨均来自Haber-Bosch法,该工艺需要高温、高压条件,能耗较高,且依赖化石燃料的使用,产生大量CO2排放,在倡导节能环保的新时代下,该工艺面临严重的能耗及环保问题。电催化氮还原合成氨工艺是一种采用电能驱动的节能工艺,且原料为绿色环保的H2O和N2,其有望替代传统合成氨工艺。但是目前该工艺存在一些技术难点有待突破,使其产氨速率、法拉第效率等性能不高,距离商用化生产差距较大。分析总结了该工艺的技术难点,围绕该领域的优化策略,重点综述了针对合成氨电化学系统的改进措施,以及近几年文献报道的研究进展,最后对该领域的未来发展进行展望。
中图分类号:
1 | Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
2 | Liao W R, Xie K, Liu L J, et al. Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia[J]. Journal of Energy Chemistry, 2021, 62: 359-366. |
3 | Giddey S, Badwal S P S, Kulkarni A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594. |
4 | Ghavam S, Vahdati M, Wilson I A G, et al. Sustainable ammonia production processes[J]. Frontiers in Energy Research, 2021, 9: 580808. |
5 | Giddey S, Badwal S P S, Munnings C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239. |
6 | Foster S L, Bakovic S I P, Duda R D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500. |
7 | Kitano M, Kanbara S, Inoue Y, et al. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis[J]. Nature Communications, 2015, 6: 6731. |
8 | Chen J G, Crooks R M, Seefeldt L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): 6611. |
9 | Brown K A, Harris D F, Wilker M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450. |
10 | Tanabe Y, Nishibayashi Y. Developing more sustainable processes for ammonia synthesis[J]. Coordination Chemistry Reviews, 2013, 257(17/18): 2551-2564. |
11 | van der Ham C J M, Koper M T, Hetterscheid D G. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191. |
12 | 成晖. 电催化氮还原合成氨的能效提升策略研究[D]. 广州: 华南理工大学, 2020. |
Cheng H. Basic research on energy efficiency improvement strategy of electrocatalytic nitrogen reduction synthesis of ammonia[D]. Guangzhou: South China University of Technology, 2020. | |
13 | Soloveichik G. Renewable energy to fuels through utilization of energy dense liquids (REFUEL)[EB/OL]. . |
14 | Battino R, Rettich T R, Tominaga T. The solubility of nitrogen and air in liquids[J]. Journal of Physical Chemical Reference Data, 1984, 13(2): 563-600. |
15 | Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68. |
16 | Abghoui Y, Skúlason E. Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts[J]. Catalysis Today, 2017, 286: 69-77. |
17 | Zhang Q K, Liu B L, Yu L P, et al. Synergistic promotion of the electrochemical reduction of nitrogen to ammonia by phosphorus and potassium[J]. ChemCatChem, 2020, 12(1): 334-341. |
18 | Bratsch S G. Standard electrode potentials and temperature coefficients in water at 298.15 K[J]. Journal of Physical and Chemical Reference Data, 1989, 18(1): 1-21. |
19 | Skúlason E, Bligaard T, Bligaard T, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3): 1235-1245. |
20 | Tao H C, Choi C, Ding L X, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214. |
21 | Su J F, Zhao H Y, Fu W W, et al. Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: new efficient electrocatalysts for ambient nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 265: 118589. |
22 | Liu D, Zhang G, Ji Q, et al. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25758-25765. |
23 | Xiong W, Guo Z, Zhao S J, et al. Facile, cost-effective plasma synthesis of self-supportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7(34): 19977-19983. |
24 | Liu Y M, Xu Q, Fan X F, et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7(46): 26358-26363. |
25 | Yuan M L, Zhang H H, Gao D L, et al. Support effect boosting the electrocatalytic N2 reduction activity of Ni2P/N,P-codoped carbon nanosheet hybrids[J]. Journal of Materials Chemistry A, 2020, 8(5): 2691-2700. |
26 | Liao W R, Qi L, Wang Y L, et al. Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance[J]. Advanced Functional Materials, 2021, 31(22): 2009151. |
27 | Li L Q, Tang C, Xia B Q, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catalysis, 2019, 9(4): 2902-2908. |
28 | Li P X, Fu W Z, Zhuang P Y, et al. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation[J]. Small, 2019, 15(40): 1902535. |
29 | Zhang X X, Wu T W, Wang H B, et al. Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media[J]. ACS Catalysis, 2019, 9(5): 4609-4615. |
30 | Yang X X, Li K, Cheng D M, et al. Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7762-7769. |
31 | Yu J L, Li J, Zhu X J, et al. Structured polyaniline: an efficient and durable electrocatalyst for the nitrogen reduction reaction in acidic media[J]. ChemElectroChem, 2019, 6(8): 2215-2218. |
32 | Yang B, Ding W L, Zhang H H, et al. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity[J]. Energy & Environmental Science, 2021, 14(2): 672-687. |
33 | 郑沐云, 万宇驰, 吕瑞涛. 电催化氮气还原合成氨催化材料研究进展[J]. 化工学报, 2020, 71(6): 2481-2491. |
Zheng M Y, Wan Y C, Lyu R T. Research progress on electrocatalytic nitrogen reduction reaction catalysts for ammonia synthesis[J]. CIESC Journal, 2020, 71(6): 2481-2491. | |
34 | Cui X Y, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8(22): 1800369. |
35 | Lan R, Tao S W. Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte[J]. RSC Advances, 2013, 3(39): 18016-18021. |
36 | Renner J N, Greenlee L F, Ayres K E, et al. Electrochemical synthesis of ammonia: a low pressure, low temperature approach[J]. Interface Magazine, 2015, 24(2): 51-57. |
37 | Lan R, Irvine J T S, Tao S W. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific Reports, 2013, 3: 1145. |
38 | Chen S M, Perathoner S, Ampelli C, et al. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas-liquid-solid three-phase reactor[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7393-7400. |
39 | Chen G F, Cao X R, Wu S, et al. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy[J]. Journal of the American Chemical Society, 2017, 139(29): 9771-9774. |
40 | Liu H M, Han S H, Zhao Y, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3211-3217. |
41 | Köleli F, Kayan D B. Low overpotential reduction of dinitrogen to ammonia in aqueous media[J]. Journal of Electroanalytical Chemistry, 2010, 638(1): 119-122. |
42 | Kugler K, Luhn M, Schramm J A, et al. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis[J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3768-3782. |
43 | Ampelli C. Electrode design for ammonia synthesis[J]. Nature Catalysis, 2020, 3(5): 420-421. |
44 | Liu Y, Huang B M, Chen X F, et al. Electrocatalytic production of ammonia: biomimetic electrode-electrolyte design for efficient electrocatalytic nitrogen fixation under ambient conditions[J]. Applied Catalysis B: Environmental, 2020, 271: 118919. |
45 | Chamoun M, Skårman B, Vidarsson H, et al. Stannate increases hydrogen evolution overpotential on rechargeable alkaline iron electrodes[J]. Journal of the Electrochemical Society, 2017, 164(6): A1251-A1257. |
46 | Singh A R, Rohr B A, Schwalbe J A, et al. Electrochemical ammonia synthesis — the selectivity challenge[J]. ACS Catalysis, 2017, 7(1): 706-709. |
47 | Hao Y C, Guo Y, Chen L W, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water[J]. Nature Catalysis, 2019, 2(5): 448-456. |
48 | Malkhandi S, Yang B, Manohar A K, et al. Self-assembled monolayers of n‑alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes[J]. Journal of the American Chemical Society, 2013, 135(1): 347-353. |
49 | Kim K, Lee N, Yoo C Y, et al. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure[J]. Journal of the Electrochemical Society, 2016, 163(7): F610-F612. |
50 | Kim K, Yoo C Y, Kim J N, et al. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. Journal of the Electrochemical Society, 2016, 163(14): F1523-F1526. |
51 | Zhou F L, Azofra L M, Ali M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520. |
52 | Suryanto B H R, Kang C S M, Wang D B, et al. Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions[J]. ACS Energy Letters, 2018, 3(6): 1219-1224. |
53 | Lazouski N, Chung M, Williams K, et al. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen[J]. Nature Catalysis, 2020, 3(5): 463-469. |
54 | Lazouski N, Schiffer Z J, Williams K, et al. Understanding continuous lithium-mediated electrochemical nitrogen reduction[J]. Joule, 2019, 3(4): 1127-1139. |
55 | Andersen S Z, Statt M J, Bukas V J, et al. Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction[J]. Energy & Environmental Science, 2020, 13(11): 4291-4300. |
56 | Suryanto B H R, Matuszek K, Choi J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191. |
57 | Guo Y, Yang Q, Wang D H, et al. A rechargeable Al-N2 battery for energy storage and highly efficient N2 fixation[J]. Energy & Environmental Science, 2020, 13(9): 2888-2895. |
58 | Cheng H, Cui P, Wang F R, et al. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium[J]. Angewandte Chemie International Edition, 2019, 58(43): 15541-15547. |
59 | Zhao L, Kuang X, Chen C, et al. Boosting electrocatalytic nitrogen fixation via energy-efficient anodic oxidation of sodium gluconate[J]. Chemical Communications, 2019, 55(68): 10170-10173. |
60 | Bai J, Huang H, Li F M, et al. Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates[J]. Journal of Materials Chemistry A, 2019, 7(37): 21149-21156. |
61 | Xu G R, Batmunkh M, Donne S, et al. Ruthenium(Ⅲ) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading[J]. Journal of Materials Chemistry A, 2019, 7(44): 25433-25440. |
62 | Gao W Y, Hao Y C, Su X, et al. Morphology-dependent electrocatalytic nitrogen reduction on Ag triangular nanoplates[J]. Chemical Communications, 2019, 55(72): 10705-10708. |
63 | Fang Y F, Liu Z C, Han J R, et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2in situ grown on Ti3C2Tx MXene[J]. Advanced Energy Materials, 2019, 9(16): 1803406. |
64 | Li J, Wu J Z, Wang H Y, et al. Acid-durable electride with layered ruthenium for ammonia synthesis: boosting the activity via selective etching[J]. Chemical Science, 2019, 10(22): 5712-5718. |
65 | Yuen S H, Pollard A G. Determination of nitrogen in agricultural materials by the nessler reagent. Ⅱ.—Micro-determinations in plant tissue and in soil extracts[J]. Journal of the Science of Food and Agriculture, 1954, 5(8): 364-369. |
66 | Ivančič I, Degobbis D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method[J]. Water Research, 1984, 18(9): 1143-1147. |
67 | 刘洋. 策略性提升常温常压下电催化合成氨效率的研究[D]. 南宁: 广西大学, 2020. |
Liu Y. Strategically increasing the efficiency of electrocatalytic ammonia synthesis under ambient conditions[D]. Nanning: Guangxi University, 2020. | |
68 | Shen H D, Choi C, Masa J, et al. Electrochemical ammonia synthesis: mechanistic understanding and catalyst design[J]. Chem, 2021, 7(7): 1708-1754. |
69 | Shan W P, Liu F D, He H, et al. The remarkable improvement of a Ce-Ti based catalyst for NOx abatement, prepared by a homogeneous precipitation method[J]. ChemCatChem, 2011, 3(8): 1286-1289. |
70 | Wang Z P, Wang Z W, Ye Y, et al. Study on the removal of nitric oxide (NO) by dual oxidant (H2O2/S2O82-) system[J]. Chemical Engineering Science, 2016, 145: 133-140. |
71 | Andersen S Z, Čolić V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements[J]. Nature, 2019, 570(7762): 504-508. |
[1] | 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037. |
[2] | 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818. |
[3] | 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017. |
[4] | 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067. |
[5] | 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶Ⅱ催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211. |
[6] | 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO2)2/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201. |
[7] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[8] | 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834. |
[9] | 陈昇, 王梦钶, 鲁波娜, 李秀峰, 刘岑凡, 刘梦溪, 范怡平, 卢春喜. 原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟[J]. 化工学报, 2022, 73(7): 2982-2995. |
[10] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
[11] | 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221. |
[12] | 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689. |
[13] | 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305. |
[14] | 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668. |
[15] | 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721. |
|