化工学报 ›› 2022, Vol. 73 ›› Issue (1): 134-143.DOI: 10.11949/0438-1157.20210905
收稿日期:
2021-07-01
修回日期:
2021-09-27
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
高宁博
作者简介:
全翠(1985—),女,博士,副教授,基金资助:
Cui QUAN1,2(),Guangtao ZHANG1,Yu XU2,Ningbo GAO1()
Received:
2021-07-01
Revised:
2021-09-27
Online:
2022-01-05
Published:
2022-01-18
Contact:
Ningbo GAO
摘要:
目前,我国城市及工业污水产生量已达7.34×1010 t/a,对其处理产生的污泥量达7.29×107 t/a。污泥的主要去向为土地利用、焚烧发电和建材利用等。在这些再利用过程中,重金属特别是Cr、Cu、Zn、Ni等对其再利用影响较大。污泥处理多采用热解处理,重金属在处理过程中会富集在热解残渣中。阐释重金属在热解残渣中的形态分布,对于其再利用过程意义重大。本文以改进的欧共体物质标准局(BCR)连续提取法为基础,总结了污泥热解残渣中重金属的形态分布,阐述了热解工况(热解温度、停留时间、催化剂)、共热解及预处理对热解残渣中重金属形态分布的影响,探讨了污泥热解残渣中重金属未来的研究趋势。
中图分类号:
全翠, 张广涛, 许毓, 高宁博. 污泥热解残渣中重金属形态分布的研究进展[J]. 化工学报, 2022, 73(1): 134-143.
Cui QUAN, Guangtao ZHANG, Yu XU, Ningbo GAO. Recent advances on the speciation distribution of heavy metals in sludge pyrolysis residue[J]. CIESC Journal, 2022, 73(1): 134-143.
1 | 智研咨询集团. 2021―2027年中国污泥干燥机行业调查与发展前景报告[EB/OL]. 北京: 智研咨询集团, 2021[2021-08-21]. . |
Zhiyan Consultative Group. Report of Sludge Dryer Industry Survey and Development Prospect in China from 2021 to 2027[EB/OL]. Beijing: Zhiyan Consultative Group, 2021[2021-08-21]. . | |
2 | 杨延璐, 许成君, 仝坤, 等. 污泥热解催化剂的研究进展[J]. 化工环保, 2020, 40(6): 580-585. |
Yang Y L, Xu C J, Tong K, et al. Research progresses on catalysts for sludge pyrolysis[J]. Environmental Protection of Chemical Industry, 2020, 40(6): 580-585. | |
3 | Rajasulochana P, Preethy V. Comparison on efficiency of various techniques in treatment of waste and sewage water―a comprehensive review[J]. Resource-Efficient Technologies, 2016, 2(4): 175-184. |
4 | Teoh S K, Li L Y. Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective[J]. Journal of Cleaner Production, 2020, 247: 119495. |
5 | Huang H J, Yuan X Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge[J]. Bioresource Technology, 2016, 200: 991-998. |
6 | 王艳语, 苗俊艳, 侯翠红, 等. 城市污泥热解及其固体残渣资源化利用[J]. 化工矿物与加工, 2020, 49(12): 41-45. |
Wang Y Y, Miao J Y, Hou C H, et al. Pyrolysis of municipal sludge and utilization of its solid residues[J]. Industrial Minerals & Processing, 2020, 49(12): 41-45. | |
7 | Fonts I, Gea G, Azuara M, et al. Sewage sludge pyrolysis for liquid production: a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2781-2805. |
8 | 刁韩杰. 不同热解条件对污泥炭特性及重金属行为的影响[D]. 杭州: 浙江农林大学, 2019. |
Diao H J. Effects of different pyrolysis conditions on carbon characteristics and heavy metal behavior of sludge[D]. Hangzhou: Zhejiang A & F University, 2019. | |
9 | Wang X D, Li C X, Li Z W, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J]. Ecotoxicology and Environmental Safety, 2019, 168: 45-52. |
10 | Méndez A, Paz-Ferreiro J, Araujo F, et al. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 46-52. |
11 | Racek J, Sevcik J, Chorazy T, et al. Biochar - recovery material from pyrolysis of sewage sludge: a review[J]. Waste and Biomass Valorization, 2020, 11(7): 3677-3709. |
12 | Leng L J, Yuan X Z, Huang H J, et al. Characterization and application of bio-chars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge[J]. Fuel Processing Technology, 2015, 129: 8-14. |
13 | Gao N B, Li J Q, Quan C, et al. Product property and environmental risk assessment of heavy metals during pyrolysis of oily sludge with fly ash additive[J]. Fuel, 2020, 266: 117090. |
14 | Gao N B, Kamran K, Quan C, et al. Thermochemical conversion of sewage sludge: a critical review[J]. Progress in Energy and Combustion Science, 2020, 79: 100843. |
15 | Naqvi S R, Tariq R, Hameed Z, et al. Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method[J]. Renewable Energy, 2019, 131: 854-860. |
16 | Shao Q Q, Ju Y Y, Guo W J, et al. Pyrolyzed municipal sewage sludge ensured safe grain production while reduced C emissions in a paddy soil under rice and wheat rotation[J]. Environmental Science and Pollution Research, 2019, 26(9): 9244-9256. |
17 | Manara P, Zabaniotou A. Towards sewage sludge based biofuels via thermochemical conversion―a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2566-2582. |
18 | 李金灵, 屈撑囤, 朱世东, 等. 含油污泥热解残渣特性及其资源化利用研究概述[J]. 材料导报, 2018, 32(17): 3023-3032. |
Li J L, Qu C T, Zhu S D, et al. Characteristics and reutilization of pyrolytic residues of oily sludge: an overview[J]. Materials Reports, 2018, 32(17): 3023-3032. | |
19 | 易龙生, 康路良, 王三海, 等. 市政污泥资源化利用的新进展及前景[J]. 环境工程, 2014, 32(S1): 992-997. |
Yi L S, Kang L L, Wang S H, et al. New progress of resource utilization of municipal sludge and its prospect[J]. Environmental Engineering, 2014, 32(S1): 992-997. | |
20 | 中国国家标准化管理委员会. 农用污泥污染物控制标准: [S]. 北京: 中国标准出版社, 2018. |
Standardization Administration of the People's Republic of China. Control standards of pollutants in sludge for agricultural use: [S]. Beijing: Standards Press of China, 2018. | |
21 | Huang R X, Zhang B, Saad E M, et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water Research, 2018, 132: 260-269. |
22 | Legros S, Levard C, Marcato-Romain C E, et al. Anaerobic digestion alters copper and zinc speciation[J]. Environmental Science & Technology, 2017, 51(18): 10326-10334. |
23 | Bogusz A, Oleszczuk P. Effect of biochar addition to sewage sludge on cadmium, copper and lead speciation in sewage sludge-amended soil[J]. Chemosphere, 2020, 239: 124719. |
24 | Jin J W, Li Y N, Zhang J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426. |
25 | Samolada M C, Zabaniotou A A. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece[J]. Waste Management, 2014, 34(2): 411-420. |
26 | Praspaliauskas M, Pedišius N, Striūgas N. Elemental migration and transformation from sewage sludge to residual products during the pyrolysis process[J]. Energy & Fuels, 2018, 32(4): 5199-5208. |
27 | 郭广慧, 陈同斌, 杨军, 等. 中国城市污泥重金属区域分布特征及变化趋势[J]. 环境科学学报, 2014, 34(10): 2455-2461. |
Guo G H, Chen T B, Yang J, et al. Regional distribution characteristics and variation of heavy metals in sewage sludge of China[J]. Acta Scientiae Circumstantiae, 2014, 34(10): 2455-2461. | |
28 | Li T F, Zhang Y X, Ren Z Y, et al. The fate of heavy metals in excess sludge during disintegration by discharge plasma[J]. Separation and Purification Technology, 2021, 277: 119433. |
29 | 解道雷, 孔慈明, 徐龙乾, 等. 城市污泥中重金属存在形态、去除及稳定化研究进展[J].化工进展, 2018, 37(1): 330-342. |
Xie D L, Kong C M, Xu L Q, et al. Developments of the speciation, removel and stabilization of heavy metals in municipal sludge[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 330-342. | |
30 | Tang J, He J G, Tang H J, et al. Heavy metal removal effectiveness, flow direction and speciation variations in the sludge during the biosurfactant-enhanced electrokinetic remediation[J]. Separation and Purification Technology, 2020, 246: 116918. |
31 | Wang X D, Chang V W C, Li Z W, et al. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: synergistic effects on biochar properties and the environmental risk of heavy metals[J]. Journal of Hazardous Materials, 2021, 412: 125200. |
32 | 陈雅洁. 城市污水污泥加压热解及产物特性研究[D]. 大连: 大连理工大学, 2018. |
Chen Y J. Study on pressurized pyrolysis of municipal municipal sewage sludge and characteristics of products[D]. Dalian: Dalian University of Technology, 2018. | |
33 | Chen Z E, Luo L, Xiao D Y, et al. Selected dark sides of biomass-derived biochars as environmental amendments[J]. Journal of Environmental Sciences, 2017, 54: 13-20. |
34 | Chen T, Zhang Y X, Wang H T, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresource Technology, 2014, 164: 47-54. |
35 | Kazi T G, Jamali M K, Kazi G H, et al. Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test[J]. Analytical and Bioanalytical Chemistry, 2005, 383(2): 297-304. |
36 | 姜媛媛, 王彦, 段文焱, 等. 市政污泥热解过程中重金属迁移特性及环境效应评估[J]. 环境科学, 2021, 42(6): 2966-2974. |
Jiang Y Y, Wang Y, Duan W Y, et al. Migration and environmental effects of heavy metals in the pyrolysis of municipal sludge[J]. Environmental Science, 2021, 42(6): 2966-2974. | |
37 | 毛凌晨, 施柳, 叶华, 等. 沉积物中重金属形态分析技术的适用范围[J]. 理化检验-化学分册, 2017, 53(9): 1109-1116. |
Quevauviller P, Rauret G, Griepink B. Single and sequential extraction in sediments and soils[C]//Workshop on Sequential Extraction in Soil and Sediments. Sitges, Spain: European Community Bureau of Reference, 1993: 231-235. | |
38 | Rauret G, López-Sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61. |
39 | Liu L H, Huang L, Huang R, et al. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate[J]. Journal of Hazardous Materials, 2021, 403: 123648. |
40 | 朱明伟, 蒋绍坚, 付国富, 等. 油菜秆热解过程中重金属形态研究[J]. 中南大学学报(自然科学版), 2019, 50(9): 2304-2309. |
Zhu M W, Jiang S J, Fu G F, et al. Morphology of heavy metals in process of pyrolysis of rape stalk[J]. Journal of Central South University(Science and Technology), 2019, 50(9): 2304-2309. | |
41 | Zhang Z Y, Ju R, Zhou H T, et al. Migration characteristics of heavy metals during sludge pyrolysis[J]. Waste Management, 2021, 120: 25-32. |
42 | 谷善勇, 骆骄阳, 刘好, 等. 铬元素及其形态分析研究进展[J]. 中国中药杂志, 2018, 43(23): 4622-4631. |
Gu S Y, Luo J Y, Liu H, et al. Research progress of chromium and its speciation analysis[J]. China Journal of Chinese Materia Medica, 2018, 43(23): 4622-4631. | |
43 | Devi P, Saroha A K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J]. Bioresource Technology, 2014, 162: 308-315. |
44 | 刁韩杰, 张进, 王敏艳, 等. 高温热解对污泥炭特性及其重金属形态变化的影响[J]. 环境工程, 2019, 37(3): 29-34. |
Diao H J, Zhang J, Wang M Y, et al. Effect of high temperature pyrolysis of sewage sludge on characteristics of residual biochar and speciation changes of heavy metals[J]. Environmental Engineering, 2019, 37(3): 29-34. | |
45 | 郭子逸, 邵敬爱, 王贤华, 等. 污泥微波热解过程重金属转化特性与风险评估[J]. 环境工程学报, 2017, 11(3): 1801-1806. |
Guo Z Y, Shao J A, Wang X H, et al. Transformation characteristic of heavy metals during microwave pyrolysis of sewage sludge and risk assessment[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1801-1806. | |
46 | Li B B, Ding S X, Fan H H, et al. Experimental investigation into the effect of pyrolysis on chemical forms of heavy metals in sewage sludge biochar (SSB), with brief ecological risk assessment[J]. Materials, 2021, 14(2): 447. |
47 | 范世锁, 汤婕, 程燕, 等. 污泥基生物炭中重金属的形态分布及潜在生态风险研究[J]. 生态环境学报, 2015, 24(10): 1739-1744. |
Fan S S, Tang J, Cheng Y, et al. Investigation of the speciation of heavy metals in sludge-derived biochar and its potential ecological risk[J]. Ecology and Environmental Sciences, 2015, 24(10): 1739-1744. | |
48 | Zhang J, Jin J W, Wang M Y, et al. Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility[J]. Environmental Research, 2020, 191: 110034. |
49 | 张伟, 陈晓平, 杨叙军, 等. 市政污泥中低温气化及重金属迁移转化特性[J]. 化工进展, 2018, 37(9): 3657-3665. |
Zhang W, Chen X P, Yang X J, et al. Characteristics of medium-low temperature gasification of sewage sludge and migration and transformation of heavy metals[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3657-3665. | |
50 | 詹亚力, 戚琳琳, 郭绍辉, 等. 剩余污泥热解及其残渣综合利用的研究进展[J]. 化工进展, 2009, 28(2): 334-338. |
Zhan Y L, Qi L L, Guo S H, et al. Progress of pyrolysis of sewage sludge and comprehensive utilization of its solid residue[J]. Chemical Industry and Engineering Progress, 2009, 28(2): 334-338. | |
51 | 全翠, 王惠惠, 高宁博. 煤热解影响因素与油品提质研究进展[J]. 煤炭科学技术, 2020, 48(S1): 187-193. |
Quan C, Wang H H, Gao N B. Review of factors affecting coal pyrolysis and quality improvement of oil[J]. Coal Science and Technology, 2020, 48(S1): 187-193. | |
52 | Han H D, Hu S, Syed-Hassan S S A, et al. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis[J]. Bioresource Technology, 2017, 236: 138-145. |
53 | Wang Z P, Liu K, Xie L K, et al. Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104659. |
54 | Jin J W, Wang M Y, Cao Y C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals[J]. Bioresource Technology, 2017, 228: 218-226. |
55 | Chanaka Udayanga W D, Veksha A, Giannis A, et al. Fate and distribution of heavy metals during thermal processing of sewage sludge[J]. Fuel, 2018, 226: 721-744. |
56 | 李爱民, 曲艳丽, 姚伟, 等. 污泥焚烧底灰中重金属残留特性的实验研究[J]. 环境污染治理技术与设备, 2002(11): 20-24. |
Li A M, Qu Y L, Yao W, et al. An experimental study on remains property of heavy metals in the bottom ash[J]. Techniques and Equipment for Environmental Pollution Control, 2002(11): 20-24. | |
57 | 黄蓉, 刘立恒, 何东薇, 等. 热解条件对硫酸钙/污泥基生物炭中Pb、Ni形态分布及生态风险的影响[J]. 环境污染与防治, 2020, 42(7): 849-853. |
Huang R, Liu L H, He D W, et al. Effects of pyrolysis conditions on the speciation distribution and ecological risk of Pb and Ni in calcium sulphate/sludge based biochar[J]. Environmental Pollution & Control, 2020, 42(7): 849-853. | |
58 | 郭子逸, 邵敬爱, 杨海平, 等. 污泥热解处理过程中重金属迁移与转化规律综述[J]. 能源与环境, 2016(4): 65-66, 68. |
Guo Z Y, Shao J A, Yang H P, et al. Review of the migration and transformation of heavy metals during pyrolysis of sludge[J]. Energy and Environment, 2016(4): 65-66, 68. | |
59 | 祝初梅. 微波高温热解城市污泥重金属固定效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
Zhu C M. Study on the immobilization of heavy metals in residues from microwave pyrolysis of sludge[D]. Harbin: Harbin Institute of Technology, 2007. | |
60 | 郭子逸. 污泥微波热解过程重金属迁移转化特性研究[D]. 武汉: 华中科技大学, 2016. |
Guo Z Y. The migration and transformation behaviors of heavy metals during the microwave pyrolysis of sewage sludge[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
61 | 王凤超, 高宁博, 全翠. 废轮胎热解技术及炭黑产物的品质提升与应用研究进展[J]. 化工学报, 2019, 70(8): 2864-2875. |
Wang F C, Gao N B, Quan C. Progress on pyrolysis technology of waste tire and upgrade and recycle utilization of carbon black product[J]. CIESC Journal, 2019, 70(8): 2864-2875. | |
62 | Chen D K, Hu H Y, Xu Z, et al. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chemical Engineering Journal, 2015, 267: 201-206. |
63 | Sun S C, Huang X F, Lin J H, et al. Study on the effects of catalysts on the immobilization efficiency and mechanism of heavy metals during the microwave pyrolysis of sludge[J]. Waste Management, 2018, 77: 131-139. |
64 | Tian T, Liu Q S. Effects of added salts on sewage sludge char characteristics and heavy metal behaviors[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146: 104774. |
65 | Chen R Q, Ma X Q, Yu Z S, et al. Study on synchronous immobilization technology of heavy metals and hydrolyzed nitrogen during pyrolysis of sewage sludge[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106079. |
66 | Li Z J, Deng H, Yang L, et al. Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge[J]. Bioresource Technology, 2018, 256: 216-223. |
67 | Wang Z P, Xie L K, Liu K, et al. Co-pyrolysis of sewage sludge and cotton stalks[J]. Waste Management, 2019, 89: 430-438. |
68 | Wang Z P, Shen R, Ji S B, et al. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil[J]. Journal of Hazardous Materials, 2021, 419: 126468. |
69 | 汪刚, 余广炜, 谢胜禹, 等. 添加不同塑料与污泥混合热解对生物炭中重金属的影响[J]. 燃料化学学报, 2019, 47(5): 611-620. |
Wang G, Yu G W, Xie S Y, et al. Effect of co-pyrolysis of different plastics with sewage sludge on heavy metals in the biochar[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 611-620. | |
70 | Peng H L, Li D, Ye J, et al. Biosorption behavior of the Ochrobactrum MT180101 on ionic copper and chelate copper[J]. Journal of Environmental Management, 2019, 235: 224-230. |
71 | Peng H L, Guan T, Luo J S, et al. Pretreatment with Ochrobactrum immobilizes chromium and copper during sludge pyrolysis[J]. Ecotoxicology and Environmental Safety, 2020, 199: 110755. |
72 | Peng H L, Wu Y K, Guan T, et al. Sludge aging stabilizes heavy metals subjected to pyrolysis[J]. Ecotoxicology and Environmental Safety, 2020, 189: 109984. |
73 | Wang X D, Li C X, Zhang B, et al. Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis[J]. Bioresource Technology, 2016, 221: 560-567. |
74 | Wang X D, Chi Q Q, Liu X J, et al. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge[J]. Chemosphere, 2019, 216: 698-706. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[13] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[14] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[15] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||