化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1083-1092.DOI: 10.11949/0438-1157.20211107
收稿日期:
2021-08-09
修回日期:
2022-01-03
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
王佳韵
作者简介:
钟国栋(1996—),男,硕士研究生,基金资助:
Guodong ZHONG1(),Chaohe DENG1,Yang WANG1,Jiayun WANG1(),Ruzhu WANG2
Received:
2021-08-09
Revised:
2022-01-03
Online:
2022-03-15
Published:
2022-03-14
Contact:
Jiayun WANG
摘要:
对PAM-LiCl水凝胶复合吸附剂进行了吸附特性实验研究,基于D-A方程拟合其特性曲线,建立了该凝胶蜂窝吸附床的三维数学模型,用COMSOL软件完成了吸附床干燥/湿润工况下的动态吸/脱附过程模拟,结合实验完成该数学模型的验证,最终实现吸附床结构的优化。研究表明,蜂窝结构大幅提升了吸附床的吸/脱附性能。吸附速率与蜂窝传质通道的孔隙度呈正相关;总吸水量先增大后减小,当孔隙度为20%时,总吸水量最大。吸附床的吸附量随吸附床厚度的增大而降低。当空气流速低于3.6 m/s时,提高空气流速能显著增强吸附床的吸附性能。蜂窝吸附床解吸性能良好,在60℃ & RH10%的热空气中可实现完全解吸。
中图分类号:
钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
Guodong ZHONG, Chaohe DENG, Yang WANG, Jiayun WANG, Ruzhu WANG. Numerical simulation and verification of heat and mass transfer characteristics in honeycomb hydrogel adsorption bed[J]. CIESC Journal, 2022, 73(3): 1083-1092.
材料 | 热导率/(W/(m·K)) | 密度/ (kg/m3) | 比定压热容/ (kJ/(kg·K)) | 吸附热/(kJ/kg) | 水分扩散系数/(m2/s) |
---|---|---|---|---|---|
PAM-LiCl | 0.4 | 1424.6 | 1600 | 2400 | 1.75×10-10 |
空气 | 0.0263 | 1.293 | 1.005 | — | 2.82×10-5 |
表1 水凝胶吸附剂和空气热物性参数
Table 1 Thermophysical properties of adsorbent and air
材料 | 热导率/(W/(m·K)) | 密度/ (kg/m3) | 比定压热容/ (kJ/(kg·K)) | 吸附热/(kJ/kg) | 水分扩散系数/(m2/s) |
---|---|---|---|---|---|
PAM-LiCl | 0.4 | 1424.6 | 1600 | 2400 | 1.75×10-10 |
空气 | 0.0263 | 1.293 | 1.005 | — | 2.82×10-5 |
Section | ΔF/(kJ/kg) | Correlation curves | R2 |
---|---|---|---|
Ⅰ | 35.4-300.5 | 0.9976 | |
Ⅱ | 300.5-307.2 | 0.98503 | |
Ⅲ | 307.2-600 | 0.95296 |
表2 PAM-LiCl的吸附特性曲线的拟合参数
Table 2 Parameters of fitting equations for PAM-LiCl
Section | ΔF/(kJ/kg) | Correlation curves | R2 |
---|---|---|---|
Ⅰ | 35.4-300.5 | 0.9976 | |
Ⅱ | 300.5-307.2 | 0.98503 | |
Ⅲ | 307.2-600 | 0.95296 |
孔径/mm | 孔体积/mm3 | 吸附剂体积/mm3 | 孔隙度/% |
---|---|---|---|
0 | 0 | 12500 | 0 |
3.57 | 1250 | 11250 | 10 |
5 | 2454 | 10046 | 20 |
6.18 | 3750 | 8750 | 30 |
7.14 | 5000 | 7500 | 40 |
表3 不同孔径对应的孔隙度
Table 3 Porosity corresponding to different pore sizes
孔径/mm | 孔体积/mm3 | 吸附剂体积/mm3 | 孔隙度/% |
---|---|---|---|
0 | 0 | 12500 | 0 |
3.57 | 1250 | 11250 | 10 |
5 | 2454 | 10046 | 20 |
6.18 | 3750 | 8750 | 30 |
7.14 | 5000 | 7500 | 40 |
1 | Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2): e1500323. |
2 | Funk C. We thought trouble was coming[J]. Nature, 2011, 476(7358): 7. |
3 | Beysens D. Estimating dew yield worldwide from a few meteo data[J]. Atmospheric Research, 2016, 167: 146-155. |
4 | Pan Z, Pitt W G, Zhang Y M, et al. The upside-down water collection system of Syntrichia caninervis [J]. Nature Plants, 2016, 2: 16076. |
5 | Bergmair D, Metz S J, de Lange H C, et al. System analysis of membrane facilitated water generation from air humidity[J]. Desalination, 2014, 339: 26-33. |
6 | Gordeeva L G, Solovyeva M V, Sapienza A, et al. Potable water extraction from the atmosphere: potential of MOFs[J]. Renewable Energy, 2020, 148: 72-80. |
7 | Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science (New York, N.Y.), 2017, 356(6336): 430-434. |
8 | Ejeian M, Wang R Z. Adsorption-based atmospheric water harvesting[J]. Joule, 2021, 5(7): 1678-1703. |
9 | Narayanan S, Li X S, Kim H, et al. Recent advances in adsorption-based heating and cooling systems[J]. Annual Review of Heat Transfer, 2016, 19(1): 199-239. |
10 | Rieth A J, Wright A M, Skorupskii G, et al. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal–organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(35): 13858-13866. |
11 | Wang J Y, Wang R Z, Wang L W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents[J]. Applied Thermal Engineering, 2016, 100: 893-901. |
12 | 高娇, 王丽伟, 周志松, 等. 多盐复合吸附剂的非平衡吸附/解吸特性[J]. 化工学报, 2016, 67: 184-190. |
Gao J, Wang L W, Zhou Z S, et al. Non-equilibrium sorption/desorption performance of composite multi-salt sorbent[J]. CIESC Journal, 2016, 67: 184-190. | |
13 | 刘金亚, 王佳韵, 王丽伟, 等. 一种吸附式空气取水装置的性能实验[J]. 化工学报, 2016, 67: 46-50. |
Liu J Y, Wang J Y, Wang L W, et al. Performance test of sorption air-to-water device[J]. CIESC Journal, 2016, 67: 46-50. | |
14 | Narayanan S, Kim H, Umans A, et al. A thermophysical battery for storage-based climate control[J]. Applied Energy, 2017, 189: 31-43. |
15 | Kim H, Rao S R, Kapustin E A, et al. Adsorption-based atmospheric water harvesting device for arid climates[J]. Nature Communications, 2018, 9: 1191. |
16 | 邓超和, 王佳韵, 李金凤, 等. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409. |
Deng C H, Wang J Y, Li J F, et al. Preparation and adsorption/desorption performance of hydrogel-based composite sorbent driven by low-temperature[J]. CIESC Journal, 2021, 72(8): 4401-4409. | |
17 | Hassan H Z, Mohamad A A, Alyousef Y, et al. A review on the equations of state for the working pairs used in adsorption cooling systems[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 600-609. |
18 | Poulikakos D, Bejan A. Unsteady natural convection in a porous layer[J]. The Physics of Fluids, 1983, 26(5): 1183-1191. |
19 | Cho S H, Kim J N. Modeling of a silica gel/water adsorption-cooling system[J]. Energy, 1992, 17(9): 829-839. |
20 | 余楠. 三相吸附储热循环的原理及实验验证[D]. 上海: 上海交通大学, 2015. |
Yu N. Principle and experimental verification of a three-phase sorption cycle for thermal energy storage[D]. Shanghai: Shanghai Jiaotong University, 2015. | |
21 | Kim H, Rao S R, LaPotin A, et al. Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120253. |
22 | Narayanan S, Yang S, Kim H, et al. Optimization of adsorption processes for climate control and thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2014, 77: 288-300. |
23 | Vivekh P, Bui D T, Kumja M, et al. Theoretical performance analysis of silica gel and composite polymer desiccant coated heat exchangers based on a CFD approach[J]. Energy Conversion and Management, 2019, 187: 423-446. |
24 | Solmuş İ, Yamalı C, Yıldırım C, et al. Transient behavior of a cylindrical adsorbent bed during the adsorption process[J]. Applied Energy, 2015, 142: 115-124. |
25 | Sun L M, Ben Amar N, Meunier F. Numerical study on coupled heat and mass transfers in an absorber with external fluid heating[J]. Heat Recovery Systems and CHP, 1995, 15(1): 19-29. |
26 | Solmuş İ, Rees D A S, Yamalı C, et al. A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair[J]. International Journal of Heat and Mass Transfer, 2012, 55(19/20): 5275-5288. |
27 | Yaïci W, Entchev E. Coupled unsteady computational fluid dynamics with heat and mass transfer analysis of a solar/heat-powered adsorption cooling system for use in buildings[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118648. |
28 | Zhao F, Zhou X Y, Liu Y, et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting[J]. Advanced Materials, 2019, 31(10): 1806446. |
29 | 张霞, 荆妙蕾. PAM水凝胶制备及溶胀性能研究[J]. 天津纺织科技, 2017(4): 51-54. |
Zhang X, Jing M L. Preparation of porous PAM hydrogel and their swelling properties research[J]. Tianjin Textile Science & Technology, 2017(4): 51-54. | |
30 | Sircar S, Hufton J R. Why does the linear driving force model for adsorption kinetics work? [J]. Adsorption, 2000, 6(2): 137-147. |
31 | Xie X, Li D Y, Tsai T H, et al. Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends[J]. Macromolecules, 2016, 49(3): 972-978. |
32 | Laurati M, Sotta P, Long D R, et al. Dynamics of water absorbed in polyamides[J]. Macromolecules, 2012, 45(3): 1676-1687. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[8] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[9] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[10] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[15] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||