化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1546-1556.doi: 10.11949/0438-1157.20211574
刘宏斐1(),李雪良1,钱钧弢2,刘金2,堵国成1,陈坚1(
)
Hongfei LIU1(),Xueliang LI1,Juntao QIAN2,Jin LIU2,Guocheng DU1,Jian CHEN1(
)
摘要:
细胞培养技术是生物医药产业的支柱,以实现微小体积内的高密度、高通量细胞培养为目的,系统地研究了常用于单层静态培养的T25方瓶置于翘板摇床上在不同操作条件下的流体力学特性和传质性能。结果表明,振荡可以显著提高方瓶的传质速率并降低混合时间,使高密度培养成为可能,但瓶盖上的空气滤膜在高转速时成为传质速率的限制因素;培养瓶对称轴与摇床旋转轴平行时,其相对位置对混合和传质无明显影响,但当二者成45°角时,相同转速下混合时间显著缩短;使用自定义函数实现了基于动态网格的CFD模拟,对不同转速下方瓶内剪切应力和能量耗散在时间与空间上分布进行了分析,为基于T25培养瓶开发一次性高通量微型反应器提供了数据支持和理论基础。
中图分类号:
1 | O'Flaherty R, Bergin A, Flampouri E, et al. Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing[J]. Biotechnology Advances, 2020, 43: 107552. |
2 | Zhang G Q, Zhao X R, Li X L, et al. Challenges and possibilities for bio-manufacturing cultured meat[J]. Trends in Food Science & Technology, 2020, 97: 443-450. |
3 | Pörtner R. Bioreactors for mammalian cells[M]//Cell Engineering. Cham: Springer International Publishing, 2014: 89-135. |
4 | Yang J, Guertin P, Jia G, et al. Large-scale microcarrier culture of HEK293T cells and Vero cells in single-use bioreactors[J]. AMB Express, 2019, 9(1): 70. |
5 | Verbruggen S, Luining D, Essen A, et al. Bovine myoblast cell production in a microcarriers-based system[J]. Cytotechnology, 2018, 70(2): 503-512. |
6 | 李雪良,张国强,赵鑫锐,等. 细胞培养肉规模化生产工艺及反应器展望[J]. 过程工程学报, 2020, 20(1): 3-11. |
Li X L, Zhang G Q, Zhao X R, et al. Prospects of process and bioreactors for large scale cultured meat production[J]. The Chinese Journal of Process Engineering, 2020, 20(1): 3-11. | |
7 | Zhang J X, Li X L, Liu H F, et al. Hydrodynamics and mass transfer in spinner flasks: implications for large scale cultured meat production[J]. Biochemical Engineering Journal, 2021, 167: 107864. |
8 | 李雪良,钱钧弢,刘金,等. 微小型生物反应器及其在生物医药领域的应用展望[J]. 生物工程学报, 2020, 36(11): 2241-2249. |
Li X L, Qian J T, Liu J, et al. Application of micro- and mini-bioreactors in biomedicine development and production[J]. Chinese Journal of Biotechnology, 2020, 36(11): 2241-2249. | |
9 | Fujii G, Kurashina Y, Terao Y, et al. Suspension culture in a T-flask with acoustic flow induced by ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2021, 73: 105488. |
10 | de Sá da Silva J, Mizukami A, Gil L V G, et al. Improving wave-induced motion bioreactor performance for human mesenchymal stromal cell expansion[J]. Process Biochemistry, 2019, 84: 143-152. |
11 | Ghasemi A, Bozorg A, Rahmati F, et al. Comprehensive study on wave bioreactor system to scale up the cultivation of and recombinant protein expression in baculovirus-infected insect cells[J]. Biochemical Engineering Journal, 2019, 143: 121-130. |
12 | Gradisnik L, Maver U, Bosnjak R, et al. Optimised isolation and characterisation of adult human astrocytes from neurotrauma patients[J]. Journal of Neuroscience Methods, 2020, 341: 108796. |
13 | Zhan C J, Hagrot E, Brandt L, et al. Study of hydrodynamics in wave bioreactors by computational fluid dynamics reveals a resonance phenomenon[J]. Chemical Engineering Science, 2019, 193: 53-65. |
14 | Dhaouadi H, Poncin S, Hornut J M, et al. Gas-liquid mass transfer in bubble column reactor: analytical solution and experimental confirmation[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(4): 548-556. |
15 | Gourich B, Vial C, El Azher N, et al. Improvement of oxygen mass transfer estimation from oxygen concentration measurements in bubble column reactors[J]. Chemical Engineering Science, 2006, 61(18): 6218-6222. |
16 | Cerri M O, Nordi Esperança M, Colli Badino A, et al. A new approach for kL a determination by gassing-out method in pneumatic bioreactors[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(12): 3061-3069. |
17 | Heidi N. Transport Processes in the Environment[Z/OL]. . |
18 | Shih T H, Liou W W, Shabbir A, et al. A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238. |
19 | Yakhot V, Orszag S A. Renormalization group analysis of turbulence (I): Basic theory[J]. Journal of Scientific Computing, 1986, 1(1): 3-51. |
20 | Danckwerts P V. Significance of liquid-film coefficients in gas absorption[J]. Industrial & Engineering Chemistry, 1951, 43(6): 1460-1467. |
21 | Whitman Walter G. The two film theory of gas absorption[J]. Chemical and Metallurgical Engineering, 1962,29: 429-433. |
22 | Nienow A W, Rielly C D, Brosnan K, et al. The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4[J]. Biochemical Engineering Journal, 2013, 76: 25-36. |
23 | Menter F R, Langtry R, Völker S. Transition modelling for general purpose CFD codes[J]. Flow, Turbulence and Combustion, 2006, 77(1/2/3/4): 277-303. |
24 | Hermann R, Lehmann M, Büchs J. Characterization of gas-liquid mass transfer phenomena in microtiter plates[J]. Biotechnology and Bioengineering, 2003, 81(2): 178-186. |
25 | Kensy F, Zimmermann H F, Knabben I, et al. Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth[J]. Biotechnology and Bioengineering, 2005, 89(6): 698-708. |
26 | Ghasemian M, Layton C, Nampe D, et al. Hydrodynamic characterization within a spinner flask and a rotary wall vessel for stem cell culture[J]. Biochemical Engineering Journal, 2020, 157: 107533. |
27 | Li X R, Yang Y K, Wang R B, et al. A scale-down model of 4000-L cell culture process for inactivated foot-and-mouth disease vaccine production[J]. Vaccine, 2019, 37(43): 6380-6389. |
28 | 焦鹏. 一种基于微小生物反应器的新型菌株复筛和前期发酵工艺开发平台[J]. 生物产业技术, 2015(1): 17-23. |
Jiao P. A new type of micro-bioreactor-based re-screening of new strains and a development platform for pre-fermentation technology[J]. Biotechnology & Business, 2015(1): 17-23. | |
29 | Nienow A W. Hydrodynamics of stirred bioreactors[J]. Applied Mechanics Reviews, 1998, 51(1): 3-32. |
30 | Furukawa H, Kato Y, Inoue Y, et al. Correlation of power consumption for several kinds of mixing impellers[J]. International Journal of Chemical Engineering, 2012, 2012: 1-6. |
[1] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[2] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[3] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[4] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[5] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[6] | 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508. |
[7] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[8] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[9] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[10] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[11] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[12] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[13] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
[14] | 唐茹意, 潘罕骞, 郑侠俊, 张广欣, 汪星平, 崔希利, 邢华斌. Z型全氟聚醚的结构表征[J]. 化工学报, 2023, 74(1): 479-486. |
[15] | 席国君, 刘子涵, 雷广平. FeTPPs-CuBTC协同强化低浓度煤层气吸附分离[J]. 化工学报, 2022, 73(9): 3940-3949. |
|