化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1546-1556.doi: 10.11949/0438-1157.20211574

• 流体力学与传递现象 • 上一篇    下一篇

摇床T25细胞培养瓶流体力学与传质特性研究

刘宏斐1(),李雪良1,钱钧弢2,刘金2,堵国成1,陈坚1()   

  1. 1.江南大学未来食品科学中心,江苏 无锡 214122
    2.迪必尔生物工程(上海)有限公司,上海 201611
  • 收稿日期:2021-11-09 修回日期:2021-12-21 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 陈坚 E-mail:18454300236@163.com;jchen@jiangnan.edu.cn
  • 作者简介:刘宏斐(1996—),女,硕士研究生,18454300236@163.com
  • 基金资助:
    江苏省自然科学基金前沿引领技术基础研究专项(BK20202002);中央高校基本科研业务费专项资金(JUSRP12011)

Hydrodynamics and mass transfer in rocking T25 cell culture flasks

Hongfei LIU1(),Xueliang LI1,Juntao QIAN2,Jin LIU2,Guocheng DU1,Jian CHEN1()   

  1. 1.Science Center for Future Foods, Jiangnan University, Wuxi 214122, Jiangsu, China
    2.T&J Bioengineering (Shanghai), Ltd. , Shanghai 201611, China
  • Received:2021-11-09 Revised:2021-12-21 Published:2022-04-05 Online:2022-04-25
  • Contact: Jian CHEN E-mail:18454300236@163.com;jchen@jiangnan.edu.cn

摘要:

细胞培养技术是生物医药产业的支柱,以实现微小体积内的高密度、高通量细胞培养为目的,系统地研究了常用于单层静态培养的T25方瓶置于翘板摇床上在不同操作条件下的流体力学特性和传质性能。结果表明,振荡可以显著提高方瓶的传质速率并降低混合时间,使高密度培养成为可能,但瓶盖上的空气滤膜在高转速时成为传质速率的限制因素;培养瓶对称轴与摇床旋转轴平行时,其相对位置对混合和传质无明显影响,但当二者成45°角时,相同转速下混合时间显著缩短;使用自定义函数实现了基于动态网格的CFD模拟,对不同转速下方瓶内剪切应力和能量耗散在时间与空间上分布进行了分析,为基于T25培养瓶开发一次性高通量微型反应器提供了数据支持和理论基础。

关键词: T25方瓶, 细胞培养, 混合, 传质, 计算流体力学

Abstract:

Cell culture technology is the pillar of the biopharmaceutical industry. T-flasks as single-use consumables are typically used in single-layer static cultivation which produces limited cell density. In order to achieve high-throughput and high density cell culture in T-flasks, this study systematically investigates the hydrodynamics and mass transfer characteristics of a T25 flask placed on a rocking platform under different operating conditions. The results show that shaking can significantly increase the mass transfer rate of the square bottle and reduce the mixing time, making high-density culture possible. But the air filter on the bottle cap becomes the limiting factor for the mass transfer rate at high rotation speeds. The horizontal and vertical distances of the flask relative to the rocking axis had negligible effects on mass transfer and mixing, but placing the flask at a 45° angle and effectively using the walls of the flask as baffles, drastically reduces the mixing time at the same rocking speed. A user-defined function is used to implement a dynamic mesh to simulate the rocking movement of the T-flask in a CFD model. The CFD model enables the analysis of the shear stress and energy dissipation rates in the flask under different rocking speeds. This study provides the data and theoretical support for the further development of a T-flask-based high-throughput, single-use microbioreactor systems.

Key words: T25 flask, cell culture, mixing, mass transfer, CFD

中图分类号: 

  • TQ 021.1

图1

T25细胞培养瓶冷模实验装置"

图2

T25细胞培养瓶几何模型及网格划分"

图3

不同振荡转速与换气方式组合下T25培养瓶中溶氧变化a—置换氮气,开口无瓶盖;b—置换氮气,刺穿瓶盖通空气;c—置换氮气,盖瓶盖,不通空气;d—未置换氮气,刺穿瓶盖通空气"

图4

振荡转速对T25培养瓶表观传质系数的影响a—置换氮气,开口无瓶盖;b—置换氮气,刺穿瓶盖通空气;c—置换氮气,盖瓶盖,不通空气;d—未置换氮气,刺穿瓶盖通空气"

图5

70 r/min 时T25培养瓶混合情况及红色光吸收情况与CFD模拟结果的比较左—原始视频帧;中—红色光吸光度;右—CFD模拟结果"

图6

70 r/min时T25培养瓶混合过程红色光吸光度标准差"

图7

振荡转速和旋转轴位置对T25培养瓶混合情况的影响a—正放;b—培养瓶中心轴与摆动转轴成45°;c—垫高;d—偏左"

图8

玻璃珠对T25培养瓶混合时间的影响a—中央正放不加玻璃珠;b—中央正放加玻璃珠"

图9

80 r/min下不同网格数量下计算域内平均液速随时间变化曲线"

图10

不同模型与转速的CFD模拟结果"

图11

混合过程中培养瓶内不同位置示踪剂质量分数变化与红色吸收光标准差"

图12

T25培养瓶在20~80 r/min转速下气液界面状态"

图13

不同转速下T25培养瓶速度分布云图"

图14

不同转速下气液界面面积随时间的变化"

图15

转速对质量加权平均剪切应力影响"

图16

不同转速下T25培养瓶内剪切应力分布云图"

图17

转速对质量加权平均能量耗散率影响"

图18

T25培养瓶能量耗散率分布云图"

1 O'Flaherty R, Bergin A, Flampouri E, et al. Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing[J]. Biotechnology Advances, 2020, 43: 107552.
2 Zhang G Q, Zhao X R, Li X L, et al. Challenges and possibilities for bio-manufacturing cultured meat[J]. Trends in Food Science & Technology, 2020, 97: 443-450.
3 Pörtner R. Bioreactors for mammalian cells[M]//Cell Engineering. Cham: Springer International Publishing, 2014: 89-135.
4 Yang J, Guertin P, Jia G, et al. Large-scale microcarrier culture of HEK293T cells and Vero cells in single-use bioreactors[J]. AMB Express, 2019, 9(1): 70.
5 Verbruggen S, Luining D, Essen A, et al. Bovine myoblast cell production in a microcarriers-based system[J]. Cytotechnology, 2018, 70(2): 503-512.
6 李雪良,张国强,赵鑫锐,等. 细胞培养肉规模化生产工艺及反应器展望[J]. 过程工程学报, 2020, 20(1): 3-11.
Li X L, Zhang G Q, Zhao X R, et al. Prospects of process and bioreactors for large scale cultured meat production[J]. The Chinese Journal of Process Engineering, 2020, 20(1): 3-11.
7 Zhang J X, Li X L, Liu H F, et al. Hydrodynamics and mass transfer in spinner flasks: implications for large scale cultured meat production[J]. Biochemical Engineering Journal, 2021, 167: 107864.
8 李雪良,钱钧弢,刘金,等. 微小型生物反应器及其在生物医药领域的应用展望[J]. 生物工程学报, 2020, 36(11): 2241-2249.
Li X L, Qian J T, Liu J, et al. Application of micro- and mini-bioreactors in biomedicine development and production[J]. Chinese Journal of Biotechnology, 2020, 36(11): 2241-2249.
9 Fujii G, Kurashina Y, Terao Y, et al. Suspension culture in a T-flask with acoustic flow induced by ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2021, 73: 105488.
10 de Sá da Silva J, Mizukami A, Gil L V G, et al. Improving wave-induced motion bioreactor performance for human mesenchymal stromal cell expansion[J]. Process Biochemistry, 2019, 84: 143-152.
11 Ghasemi A, Bozorg A, Rahmati F, et al. Comprehensive study on wave bioreactor system to scale up the cultivation of and recombinant protein expression in baculovirus-infected insect cells[J]. Biochemical Engineering Journal, 2019, 143: 121-130.
12 Gradisnik L, Maver U, Bosnjak R, et al. Optimised isolation and characterisation of adult human astrocytes from neurotrauma patients[J]. Journal of Neuroscience Methods, 2020, 341: 108796.
13 Zhan C J, Hagrot E, Brandt L, et al. Study of hydrodynamics in wave bioreactors by computational fluid dynamics reveals a resonance phenomenon[J]. Chemical Engineering Science, 2019, 193: 53-65.
14 Dhaouadi H, Poncin S, Hornut J M, et al. Gas-liquid mass transfer in bubble column reactor: analytical solution and experimental confirmation[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(4): 548-556.
15 Gourich B, Vial C, El Azher N, et al. Improvement of oxygen mass transfer estimation from oxygen concentration measurements in bubble column reactors[J]. Chemical Engineering Science, 2006, 61(18): 6218-6222.
16 Cerri M O, Nordi Esperança M, Colli Badino A, et al. A new approach for kL a determination by gassing-out method in pneumatic bioreactors[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(12): 3061-3069.
17 Heidi N. Transport Processes in the Environment[Z/OL]. .
18 Shih T H, Liou W W, Shabbir A, et al. A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238.
19 Yakhot V, Orszag S A. Renormalization group analysis of turbulence (I): Basic theory[J]. Journal of Scientific Computing, 1986, 1(1): 3-51.
20 Danckwerts P V. Significance of liquid-film coefficients in gas absorption[J]. Industrial & Engineering Chemistry, 1951, 43(6): 1460-1467.
21 Whitman Walter G. The two film theory of gas absorption[J]. Chemical and Metallurgical Engineering, 1962,29: 429-433.
22 Nienow A W, Rielly C D, Brosnan K, et al. The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4[J]. Biochemical Engineering Journal, 2013, 76: 25-36.
23 Menter F R, Langtry R, Völker S. Transition modelling for general purpose CFD codes[J]. Flow, Turbulence and Combustion, 2006, 77(1/2/3/4): 277-303.
24 Hermann R, Lehmann M, Büchs J. Characterization of gas-liquid mass transfer phenomena in microtiter plates[J]. Biotechnology and Bioengineering, 2003, 81(2): 178-186.
25 Kensy F, Zimmermann H F, Knabben I, et al. Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth[J]. Biotechnology and Bioengineering, 2005, 89(6): 698-708.
26 Ghasemian M, Layton C, Nampe D, et al. Hydrodynamic characterization within a spinner flask and a rotary wall vessel for stem cell culture[J]. Biochemical Engineering Journal, 2020, 157: 107533.
27 Li X R, Yang Y K, Wang R B, et al. A scale-down model of 4000-L cell culture process for inactivated foot-and-mouth disease vaccine production[J]. Vaccine, 2019, 37(43): 6380-6389.
28 焦鹏. 一种基于微小生物反应器的新型菌株复筛和前期发酵工艺开发平台[J]. 生物产业技术, 2015(1): 17-23.
Jiao P. A new type of micro-bioreactor-based re-screening of new strains and a development platform for pre-fermentation technology[J]. Biotechnology & Business, 2015(1): 17-23.
29 Nienow A W. Hydrodynamics of stirred bioreactors[J]. Applied Mechanics Reviews, 1998, 51(1): 3-32.
30 Furukawa H, Kato Y, Inoue Y, et al. Correlation of power consumption for several kinds of mixing impellers[J]. International Journal of Chemical Engineering, 2012, 2012: 1-6.
[1] 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964.
[2] 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861.
[3] 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895.
[4] 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913.
[5] 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169.
[6] 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508.
[7] 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548.
[8] 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293.
[9] 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081.
[10] 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246.
[11] 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697.
[12] 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256.
[13] 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289.
[14] 唐茹意, 潘罕骞, 郑侠俊, 张广欣, 汪星平, 崔希利, 邢华斌. Z型全氟聚醚的结构表征[J]. 化工学报, 2023, 74(1): 479-486.
[15] 席国君, 刘子涵, 雷广平. FeTPPs-CuBTC协同强化低浓度煤层气吸附分离[J]. 化工学报, 2022, 73(9): 3940-3949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!